scholarly journals Influence of NaCl on the polymerization of vinyl monomers by the suspension process

2019 ◽  
pp. 19-23
Author(s):  
Erika Montero ◽  
David Contreras-López ◽  
Rosalba Fuentes ◽  
María Del Rosario Galindo

The production of artificial polymers is, today, one of themost important activities of the chemical industry, polymersare widely used in everyday life, as, there are different types of polymers, they can be used for different uses. These polymeric materials have unique mechanical, physical and chemical properties, which most other materials do not possess, not to mention that its cost is lower than the other materials. The present research work focuses on the determination of optimal operating conditions for the polymerization of styrene and methyl methacrylate in a Batch reactor, as well as the influence of inorganic salt in this case NaCl in the performance of reaction and in the size of the material polymer, through the process of suspension using a synthetic route of polymerization by radical free conventional (FRP), where viscometry to the polymeric material testing was performed for this way characterize it, and to determine factors of interest such as the molecular weight, etc.

Author(s):  
O.S. Bezuglova ◽  

Rostov Region belongs to the highly protected natural territories characterized by the continuous plowing. There territories are the only reserves with the soils preserved in their natural state. However, these areas often lack detailed information about the soils quality and composition. Surveying soils on these territories is crucial for determination of their basic physical and chemical properties. The resulted compilation of soil maps could lay a foundation for creating the Red Book of Soils and the formation of a section in the soil-geographical database of the Russian Federation. Subsequently, such information can be used as a background data for the main types of soils in the region. It will be also valuable during monitoring and justification of conservation measures.


1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


2014 ◽  
Vol 70 (a1) ◽  
pp. C141-C141
Author(s):  
Ozen Ozgen ◽  
Engin Kendi ◽  
Semra Koyunoglu ◽  
Akgul Yesilada ◽  
Hwo-Shuenn Sheu

A significant part of medicine is based on the discovery and development of drugs. It is very important to know the crystal structure of pharmaceutical compounds for fundamental understanding of structure, physical and chemical properties. Many of these materials are available only as powders. So any structural information must be obtained from powder diffraction. I am going to present following the stages while solving the structure of C23H19N4OBr, 2-[3-phenyl-4(m-bromophenyl)-2-pyrazolin-1-yl]-3-methyl-4(3H)-quinazolinone, from 2-pyrazolines derivatives. The compounds are known to display various biological properties such as fungicidal insecticidal, anti bacterial, anti viral activities, pharmacological properties such as antiinflammatory agents and have industral properties(1). The powder diffraction data was collected with Debye Scherrer camera at the BL01C2 beamline at room temperature in National Synchrotron Radiation Research Center(NSRRC), Taiwan. X-ray of wavelength was 1.0333Å. This compound crystallizes in orthorhombic system space group P bca, Z=8, unit cell parameters of a=25.83(1)Å, b=15.55(5)Å, c=10.63(3)Å, and V=4266.0(10)Å3. Reliability factors were reached Rwp=0.075, Rp=0.053, RB=0.086 ve S=1.31 after Rietveld refinement.


Author(s):  
Kaplaushenko Tm ◽  
Panasenko Oi ◽  
Kucheryavy Yu

ABSTRACTObjective: Fundamental research in pharmacy and medicine have shown that drugs, which are based on nucleus of the 1,2,4-triazole, have a widerange of biological effects. Derivatives of this heterocyclic system have well-known Ukrainian clinicians and the world scientists due to its antifungal,antidepressant, anticancer, cardio- and hepatoprotective properties. The pharmacological activity of most organic compounds depends on severaldifferent factors, including bioavailability of the substance. Hence, it is very important to consider the results of the synthetic and biological researchesand established dependence of structure on the biological action when scientists model new molecules or improve pharmacological properties of anexisting structure. One of the important social and economic problems of the pharmaceutical industry is the implementation in practice of new drugsthat could compete with expensive imported drugs. In recent times, 1,2,4-triazole-3-thioderivatives take attention of compatriots and scientists offoreign countries who are working on finding bioactive compounds including heterocyclic systems. The structure, physical and chemical properties,pharmacological activities of 1,2,4-triazoles, and their 3-thioderivatives are understudied. Hence, the study of that will be actually and novelty formodern science. The main purpose of our research is synthesis of 3-alkylsulfonyl-5-(chinoline-2-yl, 2-hydroxychinoline-4-yl)-4-R-2,4-dihydro-3N1,2,4-triazoles,studyingof its physicaland chemical properties.Methods: The initial compounds have been synthesized previously using known in literature techniques. Oxidation of the sulfur atom of thesynthesized compounds to the hexavalent condition was carried out adding solution of hydrogen peroxide.Results: The structure of the obtained compounds was determined with the modern physical and chemical analysis methods: Element analysis,infrared-spectrophotometry, and their individuality with thin layer chromatography.Conclusions: Prospect of the further researches is determination of acute toxicity and next studying of pharmacological properties of the synthesizedcompounds.Keywords: 1,2,4-triazoles, Synthesis, Chemical properties, Chinoline.1 


1993 ◽  
Vol 47 (10) ◽  
pp. 1720-1727 ◽  
Author(s):  
Jie Lin ◽  
Chris W. Brown

Near-IR spectroscopy has been investigated as a universal approach for determination of physical and chemical properties of water and their functions of temperature. Principal component regression and multilinear regression models were used to correlate the spectra with the properties of water at temperatures between 5 and 65°C. Fifteen properties of water were investigated including density, refractive index, dielectric constant, relative viscosity, surface tension, vapor pressure, sound velocity, isothermal compressibility, thermal expansivity, thermal capacity, thermal conductivity, enthalpy, free energy, entropy, and ionization constant. Very good correlations were found between the near-IR predicted values of all the properties and those obtained by the traditional methods. This investigation demonstrates that these fifteen properties of water can be simultaneously determined simply by measuring a set of near-IR spectra of water, and, thus, near-IR spectroscopy can be used as a universal method for the determinations of physical and chemical properties of water. Remote sensing of the properties can be performed with the use of a fiber-optic sensor.


Sign in / Sign up

Export Citation Format

Share Document