scholarly journals Nonlinear-periodic control system for non-affine multi-connected plant with state delay

2018 ◽  
pp. 195-203
Author(s):  
Eugenie L. Eremin ◽  
Evgeniy A. Shelenok

The article deals with the synthesis problem of control system regulator for non-affine multivariable dynamic plant with state delay. The plant operates in periodic modes and also in the presence of external disturbances and parametric uncertainty. As a solution methods the hyperstability criterion, the fast-acting dynamic corrector, and L-dissipativity conditions are used. The key step of the system synthesis is the receipt for V. M. Popov’s integral inequality special estimates that ensure the fulfillment of the control goals. In final article part with the help of simulation the dynamic processes taking place in the proposed control system, are visually illustrated.

2012 ◽  
Vol 260-261 ◽  
pp. 1156-1157
Author(s):  
Goeun Choei ◽  
Jeon Geun Bae ◽  
Sang Min Shin ◽  
Heek Yung Park

This study aims to examine technical feasibility of the FLY system that was developed for control indoor temperature against change of outdoor temperature based on principles for green infrastructure. The FLY system is a control system that protects inner system from external disturbances by making transition layer. The CFD simulation was used for analyzing change of temperature at transition layer and indoor. It was analyzed that the FLY system can reduce variability of indoor temperature against uncertain change of outdoor temperature.


2017 ◽  
Vol 121 (1241) ◽  
pp. 877-900 ◽  
Author(s):  
Y. Xu ◽  
Z. Zhen

ABSTRACTThe Unmanned Aerial Vehicles (UAVs) become more and more popular due to various potential application fields. This paper studies the distributed leader-follower formation flight control problem of multiple UAVs with uncertain parameters for both the leader and followers. This problem has not been addressed in the literature. Most of the existing literature considers the leader-follower formation control strategy with parametric uncertainty for the followers. However, they do not take the leader parametric uncertainty into account. Meanwhile, the distributed control strategy depends on less information interactions and is more likely to avoid information conflict. The dynamic model of the UAVs is established based on the aerodynamic parameters. The establishment of the topology structure between a collection of UAVs is based on the algebraic graph theory. To handle the parametric uncertainty of the UAVs dynamics, a multivariable model reference adaptive control (MRAC) method is addressed to design the control law, which enables follower UAVs to track the leader UAV. The stability of the formation flight control system is proved by the Lyapunov theory. Simulation results show that the proposed distributed adaptive leader-following formation flight control system has stronger robustness and adaptivity than the fixed control system, as well as the existing adaptive control system.


2019 ◽  
Vol 91 (3) ◽  
pp. 407-419
Author(s):  
Jerzy Graffstein ◽  
Piotr Maslowski

Purpose The main purpose of this work was elaboration and verification of a method of assessing the sensitivity of automatic control laws to parametric uncertainty of an airplane’s mathematical model. The linear quadratic regulator (LQR) methodology was used as an example design procedure for the automatic control of an emergency manoeuvre. Such a manoeuvre is assumed to be pre-designed for the selected airplane. Design/methodology/approach The presented method of investigating the control systems’ sensitivity comprises two main phases. The first one consists in computation of the largest variations of gain factors, defined as differences between their nominal values (defined for the assumed model) and the values obtained for the assumed range of parametric uncertainty. The second phase focuses on investigating the impact of the variations of these factors on the behaviour of automatic control in the manoeuvre considered. Findings The results obtained allow for a robustness assessment of automatic control based on an LQR design. Similar procedures can be used to assess in automatic control arrived at through varying design methods (including methods other than LQR) used to control various manoeuvres in a wide range of flight conditions. Practical implications It is expected that the presented methodology will contribute to improvement of automatic flight control quality. Moreover, such methods should reduce the costs of the mathematical nonlinear model of an airplane through determining the necessary accuracy of the model identification process, needed for assuring the assumed control quality. Originality/value The presented method allows for the investigation of the impact of the parametric uncertainty of the airplane’s model on the variations of the gain-factors of an automatic flight control system. This also allows for the observation of the effects of such variations on the course of the selected manoeuvre or phase of flight. This might be a useful tool for the design of crucial elements of an automatic flight control system.


2010 ◽  
Vol 439-440 ◽  
pp. 396-400
Author(s):  
Xian Hua Li ◽  
Shi Li Tan ◽  
Wu Xin Huang

This paper describes a household service robot with two lightweight arms and a trinocular vision sensor. According to DH convention, the coordinate system of two arms is established, and position and orientation of the hand is computed. The inverse kinematics of the arm is solved with geometric and algebraic solution methods. By the trinocular vision sensor, robot can recognize the bottle and get its 3-D space coordinate. Through experiments, both correctness of the algorithm and stability of the robot control system are validated.


Author(s):  
D Akdas ◽  
G A Medrano-Cerda

This paper considers the design and evaluation of stabilizing controllers for a ten-degree-of-freedom (10 DOF) biped robot using linear quadratic optimal control techniques and reduced-order observers. The controllers are designed using approximate planar dynamical models for the sagittal and lateral planes. Experiments were carried out to test the control system when the biped robot was in the double-support phase and the robot was subject to external disturbances. Although the control system is based on single-support models, the experimental results have shown that the robot successfully kept its given posture under disturbances.


Author(s):  
Hasan H Ali ◽  
Roger Fales

In this paper, we consider a hydraulic system in which the velocity is controlled using an inlet-metered pump. The flow of the inlet-metered pump is controlled using an inlet metering valve that is placed upstream from a fixed displacement check valve pump. Placing the valve upstream from the pump reduces the energy losses across the valve. The multiplicative uncertainty associated with uncertain parameters in an inlet metering velocity control system is studied. Six parameters are considered in the uncertainty analysis. Four of the parameters are related to the valve dynamics which are the natural frequency, the damping ratio, the static gain, and the time delay. The other two parameters are the discharge coefficient and the fluid bulk modulus. Performance requirements for the system are described in the frequency domain. Frequency domain analysis is used to determine if the closed-loop velocity control system has robust performance. The time response of the nominal system with PID and H∞ controllers were found to be similar. The H∞ controller was found to have the advantages of robust performance when considering the parametric uncertainty while not requiring integral control as in the PID control system. The PID system did not achieve robust performance.


Author(s):  
Derek L. Wight ◽  
Eric G. Kubica ◽  
David W. L. Wang

The goal of most bipedal robotics research is to develop methods of achieving a dynamically balanced gait. Most current approaches focus on maintaining the balance of the system. This paper introduces a measure called the foot placement estimator (FPE) to restore balance to an unbalanced system. We begin by developing a theoretical proof to define when a biped is stable, as well as defining the region in which stability results are valid. This forms the basis for the derivation of the FPE. The results of the FPE are then extended to a complete gait cycle using the combination of a state machine and simple linear controllers. This control system is applied to a detailed and realistic simulation based on a physical robot currently under construction. Utilizing the FPE as a measure of balance allows us to create dynamically balanced gait cycles in the presence of external disturbances, including gait initiation and termination, without any precalculated trajectories.


Sign in / Sign up

Export Citation Format

Share Document