New composite materials using polyester woven fabric scraps as reinforcement and thermoplastic matrix

2021 ◽  
Vol 72 (01) ◽  
pp. 62-67
Author(s):  
EUGEN CONSTANTIN AILENEI ◽  
MARIA CARMEN LOGHIN ◽  
MARIANA ICHIM ◽  
ALIN HOBLEA

In this study, polypropylene-based thermoformed composites have been obtained using polyester woven fabric scraps as reinforcement. Four types of matrix have been used for the experiments: biaxially oriented polypropylene bag waste (BOPP), polypropylene nonwoven waste (TNT), 50/50 BOPP/TNT waste and virgin polypropylene fibres (PP). The percentage of matrix has been varied at four levels: 20%, 30%, 40%, and 50%. The effect of matrix/reinforcement mass ratio and matrix type on the mechanical properties of composite materials has been studied. Since the composite materials are intended to replace the oriented strand boards (OSB) in construction and furniture applications, comparison with the characteristics of 8 mm OSB has been made.

1992 ◽  
Vol 269 ◽  
Author(s):  
Mitchell L. Jackson ◽  
Curtis H. Stern

ABSTRACTMixture models were studied in an effort to predict the microwave frequency permittivities of unidirectional-fiber-reinforced thermoplastic-matrix composite materials as a function of fiber volume fraction, fiber orientation relative to the electric field, and temperature. The permittivities of the constituent fiber and plastic materials were measured using a resonant cavity perturbation technique at 9.4 GHz and at 2.45 GHz. The permittivities of the composite specimens were measured using a reflection cavity technique at 9.4 GHz and at 2.45 GHz. Simple “rule-of-mixtures” models that use the fiber and plastic permittivities have been found to approximate the complex dielectric properties of the composite for varied fiber volume fractions. The permittivities of oriented composites were modeled using a tensor rotation procedure. Composite permittivities were modeled with temperature up to the glass transition temperature of the thermoplastic matrix.


1988 ◽  
Vol 36 (5) ◽  
pp. 995-1009 ◽  
Author(s):  
Mitsuyoshi Fujiyama ◽  
Yoshimasa Kawamura ◽  
Tetsuo Wakino ◽  
Tomomi Okamoto

2021 ◽  
Author(s):  
Roberta Della Gatta ◽  
Antonello Astarita ◽  
Domenico Borrelli ◽  
Antonio Caraviello ◽  
Francesco Delloro ◽  
...  

Composite materials are widely used as main parts and structural components in different fields, especially for automotive and military applications. Although these materials supply different advantages comparing to the metals, their implementation in engineering applications is limited due to low electrical and thermal properties and low resistance to erosion. To enhance these above-mentioned properties, the metallization of composite materials by creating a thin metal film on their surface can be achieved. Among different coating deposition techniques, Cold Spray appears to be the most suitable one for the metallization of temperature-sensitive materials such as polymers and composites with a thermoplastic matrix. This process relies on kinetic energy for the formation of the coating rather than on thermal energy and consequent erosion and degradation of the polymer-based composite can be avoided. In the last years, a new method to produce composite materials, as known as Fused Filament Fabrication (FFF), has been developed for industrial applications. This technique consists of a 3D printing process that involves the thermal extrusion of thermoplastic polymer and fibers in the form of filaments from a heated mobile nozzle. The implementation of this new technique is leading to the manufacturing of customized composite materials for the cold spray application. In the presented experimental campaign, Onyx material is used as a substrate. This material is made of Nylon, a thermoplastic matrix, and chopped carbon fibers randomly dispersed in it. Aluminum powders were cold sprayed on the Onyx substrate with a low-pressure cold spray (LPCS) system. This study aims to investigate the possibility of the metalizing 3D-printed composite material by cold spray technology. For this purpose, optical and microscopical analyses are carried out. Based on the results, the feasibility of the process and the influence of the morphology of the substrate are discussed, and optimal spraying conditions are proposed.


2006 ◽  
Vol 60 (7-8) ◽  
pp. 176-179
Author(s):  
Aleksandar Kojovic ◽  
Irena Zivkovic ◽  
Ljiljana Brajovic ◽  
Dragan Mitrakovic ◽  
Radoslav Aleksic

This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide)) woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral)) as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers). Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED) was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material) could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before and after the impact, as the measure of damage. This method could be used to monitor the damage in real time, giving warnings before fatal damage occurs.


2008 ◽  
Vol 48 (4) ◽  
pp. 642-648 ◽  
Author(s):  
Y.J. Lin ◽  
P. Dias ◽  
H.Y. Chen ◽  
S. Chum ◽  
A. Hiltner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document