scholarly journals The quick death of a lake: human impact on Lake Tresssee (N Germany) during the last 6000 years – an approach using pollen, Cladocera and sedimentology

2020 ◽  
pp. 156-180 ◽  
Author(s):  
Christian Stolz ◽  
Irena A. Pidek ◽  
Magdalena Suchora

Human-induced fluctuation of lake levels has been a common phenomenon in Europe since Neolithic times. At present, Lake Tresssee is a eutrophic lake covering less than 5 ha in northern Germany, but its sudden shrinking from ~125 ha before 1800 is considered a consequence of anthropogenic lowering of the lake level. We investigated the history of anthropogenic vegetation changes and water level fluctuations by multiproxy studies of a 4 m core from the former lake area. Our analyses of pollen and Cladocera subfossil, chemistry and sedimentological features yielded important conclusions about interactions between land-use history and climate impacts on the lake and its surroundings. The results indicate that the highest lake level persisted until the Late Atlantic. Since the Subboreal there have been several fluctuations, mostly in consequence of climate impacts. Later, different phases of sediment input to the lake from tributary streams and probably also from aeolian processes from an adjacent dune field were observed. At ~2800 BC the sedimentation rate decreased in consequence of fluvial impacts, as the lake basin was nearly filled up with deposits. As a result of greater human impacts, from the Early Bronze Age the macrophyte zone expanded in the lake, the oxygen content of the water continuously decreased, and heathlands developed in the surroundings. From the Late Iron Age and in the Early Medieval, pollutants probably from ironworks are detectable by geochemical analyses in the corresponding segments. In the pollen diagram the Migration Period is clearly visible, but the suggested radiocarbon date is younger than in Lake Belau in the neighboring region of Schleswig-Holstein. Most probably our pollen diagram did not register the absolute maximum values of Fagus related to the Migration Period. From the Early Medieval a clear phase of resettlement occurs. Since the Early Modern period, the lake level has shrunk rapidly in consequence of historically documented human activity.

2002 ◽  
Vol 57 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Yuval Bartov ◽  
Mordechai Stein ◽  
Yehouda Enzel ◽  
Amotz Agnon ◽  
Ze'ev Reches

AbstractLake Lisan, the late Pleistocene precursor of the Dead Sea, existed from ∼70,000 to 15,000 yr B.P. It evolved through frequent water-level fluctuations, which reflected the regional hydrological and climatic conditions. We determined the water level of the lake for the time interval ∼55,000–15,000 cal yr B.P. by mapping offshore, nearshore, and fan-delta sediments; by application of sequence stratigraphy methods; and by dating with radiocarbon and U-series methods. During the studied time interval the lake-level fluctuated between ∼340 and 160 m below mean sea level (msl). Between 55,000 and 30,000 cal yr B.P. the lake evolved through short-term fluctuations around 280–290 m below msl, punctuated (at 48,000–43,000 cal yr B.P.) by a drop event to at least 340 m below msl. At ∼27,000 cal yr B.P. the lake began to rise sharply, reaching its maximum elevation of about 164 m below msl between 26,000 and 23,000 cal yr B.P., then it began dropping and reached 300 m below msl at ∼15,000 cal yr B.P. During the Holocene the lake, corresponding to the present Dead Sea, stabilized at ca. 400 m below msl with minor fluctuations. The hypsometric curve of the basin indicates that large changes in lake area are expected at above 403 and 385 m below msl. At these elevations the lake level is buffered. Lake Lisan was always higher than 380 m below msl, indicating a significantly large water contribution to the basin. The long and repetitious periods of stabilization at 280–290 m below msl during Lake Lisan time indicate hydrological control combined with the existence of a physical sill at this elevation. Crossing this sill could not have been achieved without a dramatic increase in the total water input to the lake, as occurred during the fast and intense lake rise from ∼280 to 160 m below msl at ∼27,000 cal yr B.P.


1994 ◽  
Vol 72 (5) ◽  
pp. 539-548 ◽  
Author(s):  
R. E. Vance ◽  
R. W. Mathewes

Comparisons between current vegetation patterns and deposition of modern pollen and plant macroremains in a saline lake basin on the northern Great Plains are used to assess the value of plant remains as indicators of past local vegetation dynamics and lake-level changes. Results indicate that both modern pollen spectra and assemblages of plant macroremains reflect clearly the composition of the local vegetation, whereas plant macroremains best reflect lake size. Cactaceae pollen and seeds are confined to upland prairie deposits. Liguliflorae (Compositae) and Leguminosae pollen, Selaginella densa microspores, and Euphorbia and Cruciferae seeds are more abundant in prairie upland deposits than in shoreline or lacustrine environments. An abundance (> 50%) of Ruppia pollen distinguishes near-shore lake sediments, indicating that this taxon is a useful marker of shallow shoreline environments in saline lakes. Seeds of Chenopodiaceae, Erigeron, Cruciferae, and Cyperaceae, as well as Chara oogonia, are more abundant in near-shore lacustrine sediments than in the central lake area, suggesting that they too are indicators of shoreline proximity. These data are useful for paleobotanical reconstructions of past lake-level dynamics. Key words: saline lakes, Great Plains, pollen, paleobotany, paleohydrology, environmental reconstruction.


2021 ◽  
Vol 10 (7) ◽  
pp. 466
Author(s):  
Wenbo Mo ◽  
Yunlin Zhao ◽  
Nan Yang ◽  
Zhenggang Xu ◽  
Weiping Zhao ◽  
...  

Spatial and quantitative assessments of water yield services in watershed ecosystems are necessary for water resource management and improved water ecological protection. In this study, we used the InVEST model to estimate regional water yield in the Dongjiang Lake Basin in China. Moreover, we designed six scenarios to explore the impacts of climate and land use/land cover (LULC) changes on regional water yield and quantitatively determined the dominant mechanisms of water yield services. The results are expected to provide an important theoretical reference for future spatial planning and improvements of ecological service functions at the water source site. We found that (1) under the time series analysis, the water yield changes of the Dongjiang Lake Basin showed an initial decrease followed by an increase. Spatially, water yield also decreased from the lake area to the surrounding region. (2) Climate change exerted a more significant impact on water yield changes, contributing more than 98.26% to the water yield variability in the basin. In contrast, LULC had a much smaller influence, contributing only 1.74 %. (3) The spatial distribution pattern of water yield services in the watershed was more vulnerable to LULC changes. In particular, the expansion of built-up land is expected to increase the depth of regional water yield and alter its distribution, but it also increases the risk of waterlogging. Therefore, future development in the basin must consider the protection of ecological spaces and maintain the stability of the regional water yield function.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 987
Author(s):  
Mana Raj Rai ◽  
Amnat Chidthaisong ◽  
Chaiwat Ekkawatpanit ◽  
Pariwate Varnakovida

The Himalayas, especially the Everest region, are highly sensitive to climate change. Although there are research works on this region related to cryospheric work, the ecological understandings of the alpine zone and climate impacts are limited. This study aimed to assess the changes in surface water including glacier lake and streamflow and the spatial and temporal changes in alpine vegetation and examine their relationships with climatic factors (temperature and precipitation) during 1995–2019 in the Everest region and the Dudh Koshi river basin. In this study, Landsat time-series data, European Commission’s Joint Research Center (JRC) surface water data, ECMWF Reanalysis 5th Generation (ERA5) reanalysis temperature data, and meteorological station data were used. It was found that the glacial lake area and volume are expanding at the rates of 0.0676 and 0.0198 km3/year, respectively; the average annual streamflow is decreasing at the rate of 2.73 m3/s/year. Similarly, the alpine vegetation greening as indicated by normalized difference vegetation index (NDVI) is increasing at the rate of 0.00352 units/year. On the other hand, the annual mean temperature shows an increasing trend of 0.0329 °C/year, and the annual precipitation also shows a significant negative monotonic trend. It was also found that annual NDVI is significantly correlated with annual temperature. Likewise, the glacial lake area expansion is strongly correlated with annual minimum temperature and annual precipitation. Overall, we found a significant alteration in the alpine ecosystem of the Everest region that could impact on the water–energy–food nexus of the Dudh Koshi river basin.


2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Shixin Huang ◽  
Xi Chun

Lake-level reconstruction of inland enclosed lakes especially for monsoon-sensitive areas is of great significance to reveal regional climate changes. Daihai, a typical enclosed lake at the marginal of the East Asian summer monsoon (EASM) area in north China, is sensitive to climate changes due to its unique regional characteristics. There were a series of lakeshore terraces, highstand lacustrine sediments, and braided river deltas, providing sufficient geomorphologic and stratigraphic evidence for the reconstruction of lake-level fluctuations of Daihai. Reconstructed lake-level variations during the early and mid-Holocene were constructed based on 22 quartz optical stimulated luminescence (OSL) ages from six well-preserved profiles around Daihai Basin. Our results indicated Daihai showed a relatively low level at 10.2 ka, and a gradually increasing lake level following the enhanced monsoon precipitation during the mid-Holocene. Specifically, the high lake level began to develop at 8.1 ka and reached the maximum at 5.2 ka, with ∼40 m higher than present. At this time, the lake area expanded to ∼400 km2, approximately six times as large as that of present, corresponding to the maximum monsoon precipitation and intensity of EASM during the mid-Holocene. However, our stratigraphic records showed a part of the depositional records in the north and east of the Daihai was missed after 5.2 ka, probably indicating a sudden drop of the Daihai lake level. These rapid level fluctuations were likely to be interpreted by some local scenarios and need to be further investigated in the future. Overall, the lake-level fluctuation of Daihai during the early and mid-Holocene was slightly different from that observed in the previously published regional records. Possibly, the interaction of the EASM and regional feedback from topography, and hydrology factors might have contributed to the spatial complexity and distinction.


2021 ◽  
pp. 183-199
Author(s):  
Steve P. Lund ◽  
Larry V. Benson

ABSTRACT This paper summarizes the hydrological variability in eastern California (central Sierra Nevada) for the past 3000 yr based on three distinct paleoclimate proxies, δ18O, total inorganic carbon (TIC), and magnetic susceptibility (chi). These proxies, which are recorded in lake sediments of Pyramid Lake and Walker Lake, Nevada, and Mono Lake and Owens Lake, California, indicate lake-level changes that are mostly due to variations in Sierra Nevada snowpack and rainfall. We evaluated lake-level changes in the four Great Basin lake systems with regard to sediment-core locations and lake-basin morphologies, to the extent that these two factors influence the paleoclimate proxy records. We documented the strengths and weaknesses of each proxy and argue that a systematic study of all three proxies together significantly enhances our ability to characterize the regional pattern, chronology, and resolution of hydrological variability. We used paleomagnetic secular variation (PSV) to develop paleomagnetic chronostratigraphies for all four lakes. We previously published PSV records for three of the lakes (Mono, Owens, Pyramid) and developed a new PSV record herein for Walker Lake. We show that our PSV chronostratigraphies are almost identical to previously established radiocarbon-based chronologies, but that there are differences of 20–200 yr in individual age records. In addition, we used eight of the PSV inclination features to provide isochrons that permit exacting correlations between lake records. We also evaluated the temporal resolution of our proxies. Most can document decadal-scale variability over the past 1000 yr, multidecadal-scale variability for the past 2000 yr, and centennial-scale variability between 2000 and 3000 yr ago. Comparisons among our proxies show a strong coherence in the pattern of lake-level variability for all four lakes. Pyramid Lake and Walker Lake have the longest and highest-resolution records. The δ18O and TIC records yield the same pattern of lake-level variability; however, TIC may allow a somewhat higher-frequency resolution. It is not clear, however, which proxy best estimates the absolute amplitude of lake-level variability. Chi is the only available proxy that records lake-level variability in all four lakes prior to 2000 yr ago, and it shows consistent evidence of a large multicentennial period of drought. TIC, chi, and δ18O are integrative proxies in that they display the cumulative record of hydrologic variability in each lake basin. Tree-ring estimations of hydrological variability, by contrast, are incremental proxies that estimate annual variability. We compared our integrated proxies with tree-ring incremental proxies and found a strong correspondence among the two groups of proxies if the tree-ring proxies are smoothed to decadal or multidecadal averages. Together, these results indicate a common pattern of wet/dry variability in California (Sierra Nevada snowpack/rainfall) extending from a few years (notable only in the tree-ring data) to perhaps 1000 yr. Notable hydrologic variability has occurred at all time scales and should continue into the future.


2020 ◽  
Vol 14 (1) ◽  
pp. 287-308 ◽  
Author(s):  
Fabian Lindner ◽  
Fabian Walter ◽  
Gabi Laske ◽  
Florent Gimbert

Abstract. Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual up-glacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 h prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor–discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level, and its retrieved maximum coincides with ice uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.


2020 ◽  
Vol 77 (11) ◽  
pp. 1836-1845
Author(s):  
K. Martin Perales ◽  
Catherine L. Hein ◽  
Noah R. Lottig ◽  
M. Jake Vander Zanden

Climate change is altering hydrologic regimes, with implications for lake water levels. While lakes within lake districts experience the same climate, lakes may exhibit differential climate vulnerability regarding water level response to drought. We took advantage of a recent drought (∼2005–2010) and estimated changes in lake area, water level, and shoreline position on 47 lakes in northern Wisconsin using high-resolution orthoimagery and hypsographic curves. We developed a model predicting water level response to drought to identify characteristics of the most vulnerable lakes in the region, which indicated that low-conductivity seepage lakes found high in the landscape, with little surrounding wetland and highly permeable soils, showed the greatest water level declines. To explore potential changes in the littoral zone, we estimated coarse woody habitat (CWH) loss during the drought and found that drainage lakes lost 0.8% CWH while seepage lakes were disproportionately impacted, with a mean loss of 40% CWH. Characterizing how lakes and lake districts respond to drought will further our understanding of how climate change may alter lake ecology via water level fluctuations.


Sign in / Sign up

Export Citation Format

Share Document