scholarly journals Assessing Climate Change Trends and Their Relationships with Alpine Vegetation and Surface Water Dynamics in the Everest Region, Nepal

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 987
Author(s):  
Mana Raj Rai ◽  
Amnat Chidthaisong ◽  
Chaiwat Ekkawatpanit ◽  
Pariwate Varnakovida

The Himalayas, especially the Everest region, are highly sensitive to climate change. Although there are research works on this region related to cryospheric work, the ecological understandings of the alpine zone and climate impacts are limited. This study aimed to assess the changes in surface water including glacier lake and streamflow and the spatial and temporal changes in alpine vegetation and examine their relationships with climatic factors (temperature and precipitation) during 1995–2019 in the Everest region and the Dudh Koshi river basin. In this study, Landsat time-series data, European Commission’s Joint Research Center (JRC) surface water data, ECMWF Reanalysis 5th Generation (ERA5) reanalysis temperature data, and meteorological station data were used. It was found that the glacial lake area and volume are expanding at the rates of 0.0676 and 0.0198 km3/year, respectively; the average annual streamflow is decreasing at the rate of 2.73 m3/s/year. Similarly, the alpine vegetation greening as indicated by normalized difference vegetation index (NDVI) is increasing at the rate of 0.00352 units/year. On the other hand, the annual mean temperature shows an increasing trend of 0.0329 °C/year, and the annual precipitation also shows a significant negative monotonic trend. It was also found that annual NDVI is significantly correlated with annual temperature. Likewise, the glacial lake area expansion is strongly correlated with annual minimum temperature and annual precipitation. Overall, we found a significant alteration in the alpine ecosystem of the Everest region that could impact on the water–energy–food nexus of the Dudh Koshi river basin.

2021 ◽  
Author(s):  
Deniz Kilic ◽  
Agnès Rivière ◽  
Nicolas Flipo ◽  
Agnès Ducharne ◽  
Philippe Peylin ◽  
...  

<p>Given the current climate and anthropogenic evolution, water management becomes one of the greatest challenges of the 21st century. Number of studies have analyzed observed hydrologic trends and their connections with the changing climate. Impacts include changes in runoff, river discharge and groundwater recharge. Water quality is also impacted, through its many facets including the water temperature. Despite the important progress made in climate modelling, the impact of the predicted global warming on hydrological processes remains uncertain; particularly, in large hydrosystems. The Seine River basin has a surface of 78,650 km², it includes the Seine River and its 50 tributaries, it is populated by 30% of France inhabitants. The Seine River basin crosses 14 departments and 4 regions, including the Paris metropolitan area. Climate change poses a vulnerability due to its potential political, social, and economic consequences in the Seine basin. The agricultural activities and number industries depend on water resources or are located on the river sides. Our ability to adapt water resource management strategies to the climate change depends on our ability to understand and estimate the actual evolution of water resource. </p><p>The terrestrial water budget is now considered as a single continuum. This integrated conceptualisation needs to simulate the spatial and temporal dynamics of water exchanges between the surface and groundwater. Here we propose to improve the representation of the surface water budget with the goal to decrease the uncertainty of the whole water budget of the Seine hydrosystem. We used the process-based physical land surface model ORCHIDEE (tag 2.2) to estimate surface water budget and heat balance for the period 1980-2018. This application takes advantage of high resolution land-use and albedo maps from ESA-CCI database, and various soil map databases. The model was satisfactorily able to reproduce the discharges of each sub-catchment, the actual evapotranspiration fluxes and LAI. With these results, we are able to estimate the the partitioning of the surface water balance of each catchment of the Seine basin. These results have wide ranging implications such as the estimation of energy balance in the basin, the estimation of spatialisation of the aquifer recharge, and the feedback between aquifers and the surface.</p>


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


2021 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The current patterns estimation of the water regime under climate change is one of the most urgent tasks in Ukraine and the world. Such changes are determined by fluctuations in the main climatic characteristics - precipitation and air temperature, which are defined the value of evaporation. These parameters influence on the annual runoff distribution and long-term runoff fluctuations. In particular, the annual precipitation redistribution is reflected in the corresponding changes in the river runoff.<br>The assessment of the current state and nature of changes in precipitation and river runoff of the Siverskyi Donets River Basin was made by comparing the current period (1991-2018) with the period of the climatological normal (1961-1990).<br>In general, for this area, it was defined the close relationship between the amount of precipitation and the annual runoff. Against the background of insignificant (about 1%) increase of annual precipitation in recent decades, it was revealed their redistribution by seasons and separate months. There is a decrease in precipitation in the cold period (November-February). This causes (along with other factors) a decrease in the amount of snow and, accordingly, the spring flood runoff. There are frequent cases of unexpressed spring floods of the Siverskyi Donets River Basin. The runoff during March-April (the period of spring flood within the Ukrainian part of the basin) decreased by almost a third.<br>The increase of precipitation during May-June causes a corresponding (insignificant) increase in runoff in these months. The shift of the maximum monthly amount of precipitation from May (for the period 1961-1990) to June (in the current period) is observed.<br>There is a certain threat to water supply in the region due to the shift in the minimum monthly amount of precipitation in the warm period from October to August. Compared with October, there is a higher air temperature and, accordingly, higher evaporation in August, which reduces the runoff. Such a situation is solved by rational water resources management of the basin. The possibility of replenishing water resources in the basin through the transfer runoff from the Dnieper (Dnieper-Siverskyi Donets channel) and the annual runoff redistribution in the reservoir system causes some increase in the river runoff of summer months in recent decades. This is also contributed by the activities of the river basin management structures, which control the maintenance water users' of minimum ecological flow downstream the water intakes and hydraulic structures in the rivers of the basin.<br>Therefore, in the period of current climate change, the annual runoff distribution of the Siverskyi Donets River Basin has undergone significant changes, which is related to the annual precipitation redistribution and anthropogenic load on the basin.</p>


2020 ◽  
Vol 12 (16) ◽  
pp. 6644
Author(s):  
Xue Wu ◽  
Xiaomin Sun ◽  
Zhaofeng Wang ◽  
Yili Zhang ◽  
Qionghuan Liu ◽  
...  

Vegetation forms a main component of the terrestrial biosphere owing to its crucial role in land cover and climate change, which has been of wide concern for experts and scholars. In this study, we used MODIS (moderate-resolution imaging spectroradiometer) NDVI (Normalized Difference Vegetation Index) data, land cover data, meteorological data, and DEM (Digital Elevation Model) data to do vegetation change and its relationship with climate change. First, we investigated the spatio-temporal patterns and variations of vegetation activity in the Koshi River Basin (KRB) in the central Himalayas from 2000 to 2018. Then, we combined NDVI change with climate factors using the linear method to examine their relationship, after that we used the literature review method to explore the influence of human activities to vegetation change. At the regional scale, the NDVIGS (Growth season NDVI) significantly increased in the KRB in 2000–2018, with significant greening over croplands in KRB in India. Further, the croplands and forest in the KRB in Nepal were mainly influenced by human interference. For example, improvements in agricultural fertilization and irrigation facilities as well as the success of the community forestry program in the KRB in Nepal increased the NDVIGS of the local forest. Climate also had a certain impact on the increase in NDVIGS. A significant negative correlation was observed between NDVIGS trend and the annual minimum temperature trend (TMN) in the KRB in India, but an insignificant positive correlation was noted between it and the total annual precipitation trend (PRE). NDVIGS significantly decreased over a small area, mainly around Kathmandu, due to urbanization. Increases in NDVIGS in the KRB have thus been mainly affected by human activities, and climate change has helped increase it to a certain extent.


2018 ◽  
Vol 91 (3) ◽  
pp. 1365-1383 ◽  
Author(s):  
Abid Hussain ◽  
Golam Rasul ◽  
Bidhubhusan Mahapatra ◽  
Shahriar Wahid ◽  
Sabarnee Tuladhar

Author(s):  
Peter Kishiwa ◽  
Joel Nobert ◽  
Victor Kongo ◽  
Preksedis Ndomba

Abstract. This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16–18 % in 2050s relative to 1980–1999 periods. Temperature is projected to increase by an average of 2 ∘C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3557
Author(s):  
Zhaoyang Li ◽  
Yidan Cao ◽  
Jie Tang ◽  
Yao Wang ◽  
Yucong Duan ◽  
...  

The southwest of Songnen Plain, Northeast China, has an arid climate and is a typical concentrated distribution area of saline-alkali soil. The terrain here is low-lying, with many small, shallow lakes that are vulnerable to climate change. This paper used Landsat satellite remote sensing images of this area from 1985 to 2015 to perform interpretation of lake water bodies, to classify the lakes according to their areas, and to analyze the spatial dynamic characteristics of lakes in different areas. During the 30 years from 1985 to 2015, the number of lakes in the study area decreased by 71, and the total lake area decreased by 266.85 km2. The decrease was more serious in the east and northeast, and the appearance and disappearance of lakes was drastic. The Mann–Kendall test method was used to analyze trends in meteorological factors (annual mean temperature, annual precipitation, and annual evaporation) in the study area and perform mutation tests. Through correlation analysis and multiple generalized linear model analysis, the response relationship between lake change and climate change was quantified. The results showed that the average temperature in the area is rising, and the annual precipitation and evaporation are declining. Temperature and precipitation mainly affected lakes of less than 1 km2, with a contribution rate of 31.2% and 39.4%, and evaporation had a certain correlation to the total lake area in the study area, with a contribution rate of 60.2%. Small lakes are susceptible to climatic factors, while large lakes, which are mostly used as water sources, may be influenced more by human factors. This is the problem and challenge to be uncovered in this article. This research will help to improve our understanding of lake evolution and climate change response in saline-alkali areas and provide scientific basis for research into lakes’ (reservoirs’) sustainable development and protection.


Sign in / Sign up

Export Citation Format

Share Document