scholarly journals Specific Features of Water Quality Regulation In Process of its Selective Abstraction from Reservoirs

Author(s):  

Issues of effectiveness enhancement of the water selective intake for solution of drinking water supply problems with the Perm Chusovaya water intake as a study case have been discussed. Abstraction of water with the best consumption properties is of significant interest in the case of stable vertical water mass stratification. If water with the required properties locates in the upper layers establishment of bottom barriers around water intake head walls to cut off water intake from near-bottom layers is the most effective tool. At this the barrier parameters are to be determined by both the taken water volume and the height of the “discontinuous jump layer” position that define the water mass boundary. The barrier parameters are to be in accordance with the currently active Rules of Reservoirs Exploitation. Field and computation experiments have been carried out to elaborate the technique of stable intake of water with the required consumption properties. A series of computation experiments on impact of water intake amount on the taken water quality has been carried out in 3D with ANSYS Fluent package of computation hydrodynamics. The task was solved within the frameworks of non-stationary isothermal approach. Conclusions concerning both water quality enhancements in the conditions of significant chemical/physical properties’ heterogeneity by depth and provision of effective and stable operation of selective water intake have been obtained.

2021 ◽  
Vol 264 ◽  
pp. 04016
Author(s):  
Ikromali Akhmedov ◽  
Zulfiya Mirkhasilova

Vertical drainage wells in terms of construction technology and design do not differ from wells for irrigation. They are not deeper in-depth than irrigation wells and are generally 40-70 m. The main task of vertical drainage wells is land reclamation. They, depending on natural and economic conditions, serve on 5-120 hectares of area. In many areas, vertical drainage wells serve a dual purpose; land reclamation and irrigation of agricultural crops. Water intake wells, including vertical drainage wells, are characterized by a decrease in their flow rates during operation. To ensure the stable operation of the irrigation and drainage system, where water intake wells are operated, repair and restoration work is carried out on them, aimed at increasing flow rates. For the construction of vertical drainage wells in the Sirdarya river basin, steel pipes and filters are mainly used, which corrode in an aggressive environment. In the water intake zone of the well and the metal corrosion process, the colmatation process also occurs. All of them are the main reasons for the decline in well production rates. The carried out repair and restoration measures are aimed at destroying the structure of corrosion and clogging products. In practice, mechanical, physical, biological, and chemical methods are used to clean the filters of water intake wells. They all have their own technology and equipment. However, all these works do not exclude the repeatability of the process. Repetitive workover will come to ineffective, the stage of good concertation is approaching. It is known that polymeric materials do not corrode. They work steadily in aggressive environments. To prevent the corrosion process, polymeric-seam pipes were used as a filter frame and a casing for the construction of vertical drainage wells. Two pilot wells were built on the territory of the Chiyili district of the Kyzylorda region of the Republic of Kazakhstan. The wells were drilled with a rotary drilling unit with backwash. Pure water (irrigation) was used as drilling fluid. To form a gravel pack in the annular zone of the casing, gravel-sand material from the Jailma quarry was used. The material was brought by rail and road transport. Pipe sections were prepared on the surface of 10 meters. Steel rings were put on the pipe from both ends of each section; their connection in the barrel was made by electric welding. The results showed that in the initial period of operation, a decline process was observed. In further exploitation, the well flow rate stabilized. As a result of construction using pipes and filters made of polymer material, the effect was achieved in terms of water volume more than 3 times and in terms of service life 4.2 times compared to a metal filter well.


Author(s):  
Keizo Negi ◽  
Keizo Negi ◽  
Takuya Ishikawa ◽  
Takuya Ishikawa ◽  
Kenichiro Iba ◽  
...  

Japan experienced serious water pollution during the period of high economic growth in 1960s. It was also the period that we had such damages to human health, fishery and living conditions due to red tide as much of chemicals, organic materials and the like flowing into the seas along the growing population and industries in the coastal areas. Notable in those days was the issues of environment conservation in the enclosed coastal seas where pollutants were prone to accumulate inside due to low level of water circulation, resulting in the issues including red tide and oxygen-deficient water mass. In responding to these issues, we implemented countermeasures like effluent control with the Water Pollution Control Law and improvement/expansion of sewage facilities. In the extensive enclosed coastal seas of Tokyo Bay, Ise Bay and the Seto Inland Sea, the three areas of high concentration of population, we implemented water quality total reduction in seven terms from 1979, reducing the total quantities of pollutant load of COD, TN and TP. Sea water quality hence has been on an improvement trend as a whole along the steady reduction of pollutants from the land. We however recognize that there are differences in improvement by sea area such as red tide and oxygen-deficient water mass continue to occur in some areas. Meanwhile, it has been pointed out that bio-diversity and bio-productivity should be secured through conservation/creation of tidal flats and seaweed beds in the view point of “Bountiful Sea” To work at these challenges, through the studies depending on the circumstances of the water environment in the enclosed coastal seas, we composed “The Policy of Desirable State of 8th TPLCS” in 2015. We have also added the sediment DO into the water quality standard related to the life-environmental items in view of the preservation of aquatic creatures in the enclosed water areas. Important from now on, along the Policy, is to proceed with necessary measures to improve water quality with good considerations of differences by area in the view point of “Beautiful and bountiful Sea”.


2015 ◽  
Vol 8 (1) ◽  
pp. 38-42
Author(s):  
Pengfei Si ◽  
Xiangyang Rong ◽  
Angui Li ◽  
Xiaodan Min ◽  
Zhengwu Yang ◽  
...  

As a realization of the energy cascade utilization, the regional energy system has the significant potential of energy saving. As a kind of renewable energy, river water source heat pump also can greatly reduce the energy consumption of refrigeration and heating system. Combining the regional energy and water source heat pump technology, to achieve cooling, heating and power supply for a plurality of block building is of great significance to reduce building energy consumption. This paper introduces a practical engineering case which combines the regional energy system of complex river water source heat pump, which provides a detailed analysis of the hydrology and water quality conditions of the river water source heat pump applications, and discusses the design methods of water intake and drainage system. The results show that the average temperature of cold season is about 23.5 °C, the heating season is about 13.2 °C; the abundant regional water flow can meet the water requirement of water source heat pump unit; the sediment concentration index cannot meet the requirement of river water source heat pump if the water enters the unit directly; the river water chemistry indicators (pH, Cl-, SO42-, total hardness, total iron) can meet the requirement of river water source heat pump, and it is not required to take special measures to solve the problem. However, the problem of sediment concentration of water must be solved.


Author(s):  
И.Д. Музаев ◽  
К.С. Харебов ◽  
Н.И. Музаев

Проведено механико-математическое моделирование селективного водозаборного процесса в трехслойном стратифицированном водоеме, когда вода забирается из внутреннего объема промежуточного слоя водоема. Составленная математическая модель представляет контактную начально-краевую задачу теории поверхностных и внутренних гравитационных волн в идеальной несжимаемой жидкости. Водозабор из внутреннего пространства промежуточного слоя смоделирован в виде объемного стока с бесконечно малой толщиной и конечным сточным расходом. В результате решения поставленной начально-краевой задачи получена система расчетных формул, которая с привлечением компьютерных средств позволяет выбирать диаметр водозаборной трубы и расход через нее, вычислять отметку глу- бинного расположения конца водозаборной трубы. Выбор этих параметров обеспе- чивает селективный водозабор исключительно из промежуточного слоя, где вода чище и холоднее, чем в других слоях водоема. The purpose of this work is to carry out mathematical modelling of selective water intake process in a three-layer stratified reservoir, when the water is taken from the interior volume of the intermediate layer of the reservoir. In the methodology for solving the problem, the water intake from the interior volume of the intermediate layer is modelled as a finite flow rate drain of fluid trough an infinitely thin layer. The contact initial-boundary value problem of the theory of surface and internal gravitational waves in an ideal incompressible fluid is used as a mathematical model of the water intake process. As a result we obtain a system of calculation formulas for estimation of the diameter of water intake pipe and the flow rate through it. The depth mark of the end of the water intake pipe was calculated. Originality/value: 1. The boundary value problem simulating a selective water intake process from the internal volume of the intermediate layer of a three-layer stratified reservoir was formulated and solved. 2. On the basis of the obtained set of formulas, computer experiments were performed and thus the regularities of the influence of the above external input parameters on the process were established. 3. The choice of these parameters provides selective intake exclusively from the intermediate layer, where the water is cleaner than in the lower layer and colder in summer than in the upper layer.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Darwis Darwis ◽  
Joppy D. Mudeng ◽  
Sammy N.J. Londong

This research aimed to determine the stocking density that support the best growth and survival rate of carp cultivated in aquaponic systems, and to study the water quality of carp culture with different stocking densities in aquaponic systems. The study used 12 aquaria measuring 40x40x40 cm each (water volume of 50 liters). The experimental fish are carp (Cyprinus carpio) weighing in average of 3.5 g/individual.  The fish were cultivated with different stocking densities as treatment, including A = 4; B = 7; C = 10 and D = 13 individuals/aquarium.  The fish were fed with pellet at 5%/body weight/day with a feeding frequency of two times a day. The study was conducted for 4 weeks. Data consisting of daily growth, survival and water quality parameters (temperature, pH, dissolved oxygen, ammonia, nitrite and nitrate) were measured once a week. The data obtained were analyzed by ANOVA. The results of the study showed that the difference in stocking density had no significant effect on the growth and survival of carp.  Water quality was in a reasonable range to support the growth and survival of carp cultivated with aquaponic systems.Keywords: cultivation, carp, aquaponics, stocking density, growth


Sign in / Sign up

Export Citation Format

Share Document