scholarly journals SNOW COWER DYNAMIC ON THE TERRITORY OF THE PERM REGION IN THE 1988-2018 PERIOD

Author(s):  
A.D. Kryuchkov ◽  
O.V. Istomina

The article examines the features of snow cover occurrence in the Perm region for the 30 year period. Data about the onset, destruction, duration of steady snow cover and snow depth are given. Statistical parameters for single stations and the entire region are calculated. Spatio-temporal variability of basic snow cover characteristics is analyzed. It is shown that the dates of onset and destruction of steady snow cover have shifted to later terms during 1988-2018 period. It is determined that the increase in the number of days with a stable snow cover was observed after a long reduction in recent years. The features of the spatial structure of snow cover distribution in the region are revealed. It is established that the snow depth decreased until the end of the 00-ies of the XXI century, in recent years there has been a tendency to increase in values.

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2021 ◽  
Vol 2 ◽  
pp. 95-110
Author(s):  
A.D., Kryuchkov ◽  
◽  
N.A Kalinin ◽  

Comparison of snow cover characteristics according to weather stations and ERA 5-Land reanalysis in the Perm region / Kryuchkov A.D., Kalinin N.A. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 95-110. The consistency of information on the snow depth contained in the ERA 5-Land reanalysis with data of weather stations of the Perm region is analyzed. The study is performed for the period from October 1990 to May 2020. It is shown that the interannual variability of the snow cover is generally successfully reflected by the current version of the reanalysis. Data on the snow availability are more accurately reproduced during the period of formation of the snow cover than during its melt. The performed calculations demonstrate a systematic overestimation of the snow depth in the ERA 5-Land reanalysis relative to the actual observations and a predominantly meridional error distribution on the territory of the Perm region. The maximum values in the seasonal variability of the snow cover occur earlier in the reanalysis than in the actual observations. Keywords: snow cover, reanalysis, weather stations, seasonal variability, interannual variability


2010 ◽  
Vol 4 (1) ◽  
pp. 1-30 ◽  
Author(s):  
T. Grünewald ◽  
M. Schirmer ◽  
R. Mott ◽  
M. Lehning

Abstract. The spatio-temporal variability of the mountain snow cover determines the avalanche danger, snow water storage, permafrost distribution and the local distribution of fauna and flora. Using a new type of terrestrial laser scanner (TLS), which is particularly suited for measurements of snow covered surfaces, snow depth, snow water equivalent (SWE) and melt rates have been monitored in a high alpine catchment during an ablation period. This allowed for the first time to get a high resolution (2.5 m cell size) picture of spatial variability and its temporal development. A very high variability in which maximum snow depths between 0–9 m at the end of the accumulation season was found. This variability decreased during the ablation phase, although the dominant snow deposition features remained intact. The spatial patterns of calculated SWE were found to be similar to snow depth. Average daily melt rate was between 15 mm/d at the beginning of the ablation period and 30 mm/d at the end. The spatial variation of melt rates increased during the ablation rate and could not be explained in a simple manner by geographical or meteorological parameters, which suggests significant lateral energy fluxes contributing to observed melt. It could be qualitatively shown that the effect of the lateral energy transport must increase as the fraction of snow free surfaces increases during the ablation period.


2005 ◽  
Vol 36 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Achim A. Beylich

The intensity and spatio-temporal variability of chemical denudation was analyzed in the Latnjavagge drainage basin (9 km2; 950–1440 m a.s.l.; 68°20′N, 18°30′E), an arctic–oceanic periglacial environment in northernmost Swedish Lapland. Data on daily runoff and solute concentrations at different test sites within the selected representative drainage basin were collected during the entire arctic summer seasons of 2000, 2001, 2002 and 2003. The mean annual chemical denudation net rate for the Latnjavagge drainage basin is 5.4 t/km2 yr. Most of the annual runoff occurs when the ground is still frozen. The rate in Latnjavagge is much lower than chemical denudation rates reported for Kärkevagge (Swedish Lapland) situated close to Latnjavagge, but at a similar level to a number of other subarctic, arctic and alpine environments. Chemical denudation shows a spatio-temporal variability within the drainage basin, which is mainly caused by a spatio-temporal variability of snow cover and ground frost and a spatial variability of regolith thicknesses within Latnjavagge.


2010 ◽  
Vol 4 (2) ◽  
pp. 215-225 ◽  
Author(s):  
T. Grünewald ◽  
M. Schirmer ◽  
R. Mott ◽  
M. Lehning

Abstract. The spatio-temporal variability of the mountain snow cover determines the avalanche danger, snow water storage, permafrost distribution and the local distribution of fauna and flora. Using a new type of terrestrial laser scanner, which is particularly suited for measurements of snow covered surfaces, snow depth was monitored in a high alpine catchment during an ablation period. From these measurements snow water equivalents and ablation rates were calculated. This allowed us for the first time to obtain a high resolution (2.5 m cell size) picture of spatial variability of the snow cover and its temporal development. A very high variability of the snow cover with snow depths between 0–9 m at the end of the accumulation season was observed. This variability decreased during the ablation phase, while the dominant snow deposition features remained intact. The average daily ablation rate was between 15 mm/d snow water equivalent at the beginning of the ablation period and 30 mm/d at the end. The spatial variation of ablation rates increased during the ablation season and could not be explained in a simple manner by geographical or meteorological parameters, which suggests significant lateral energy fluxes contributing to observed melt. It is qualitatively shown that the effect of the lateral energy transport must increase as the fraction of snow free surfaces increases during the ablation period.


2018 ◽  
Vol 58 (4) ◽  
pp. 473-485
Author(s):  
A. Y. Komarov ◽  
Y. G. Seliverstov ◽  
P. B. Grebennikov ◽  
S. A. Sokratov

Te paper presents the results of studies aimed at investigation of the spatial and temporal variability of snow coverstructure on the basis of strength values and its variations obtained by means of the high-resolution penetrometer SnowMicroPen. Te possibilities of fast and independent from the observer identifcation of layers (including identifcation of weakened, potentially avalanche-dangerous layers) were estimated under the climatic conditions of Moscow and the Khibiny mountains. Horizontal areas with homogeneous underlying surface and vegetation were selected for the stratigraphic studies that made it possible to avoid a possible influence of slope relief and exposure from the obtained data on the spatial and temporal variability of the snow depth structure. Te analysis of the information obtained in winter seasons 2014/15 and 2016/17 allowed constructing detailed schemes of the snow cover evolution at the Moscow site as well as assessing the inter-annual and intra-seasonal variability of its structure. Afer the SnowMicroPen data were recorded in the course of the feld works carried out in winter 2015/16 on the Khibiny educational and scientifc base of the Lomonosov Moscow State University (city of Kirovsk), the 10-meter trench on the same profle was described in details, and direct data on the snow cover structure were obtained. Te strength values resulted from the above studies characterize the layers composed of crystals of various shapes and sizes, and they are considered as the frst step to methodology of operational defnition of the spatially-inhomogeneous stratigraphy and stability of snowpack without snowpit observations. Te data analysis showed high spatial and temporal variability of the structure and properties of snow cover even at a homogeneous area, usually described by a single snowpit.


2017 ◽  
Vol 30 (4) ◽  
pp. 1521-1533 ◽  
Author(s):  
Wenfang Xu ◽  
Lijuan Ma ◽  
Minna Ma ◽  
Haicheng Zhang ◽  
Wenping Yuan

Abstract Changes in snow cover over the Qinghai–Tibetan Plateau have attracted much attention in recent years owing to climate change. Because of the limitations of in situ observations, only a few studies have analyzed the dynamics of snow cover. Using observations from 103 meteorological stations across the Qinghai–Tibetan Plateau, this study investigated the spatial and temporal variability of snow depth and the number of snow-cover days. The results show a very weak negative trend for the snow depth and the number of snow-cover days in spring and winter from 1961 to 2010, but two different trends were found: an initial increase followed by a decrease. In summer and autumn, snow depth and the number of snow-cover days show a significant decreasing trend for most sites. The duration of snow cover exhibits a significant decreasing trend (−3.5 ± 1.2 days decade−1), which was jointly controlled by a later snow starting time (1.6 ± 0.8 days decade−1) and an earlier snow ending time (−1.9 ± 0.8 days decade−1) consistent with a response to climate change. This study highlights the competing effects of rising temperatures and changing precipitation, which remain an important challenge in understanding and interpreting the observed changes in snow depth and the number of snow-cover days for the Qinghai–Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document