scholarly journals Self-healing cement materials – microscopic techniques

2020 ◽  
Vol 19 (2) ◽  
pp. 033-040
Author(s):  
Marta Dudek

The article presents a general classification of intelligent materials with self-healing (self-repairing) properties, focusing on self-healing cementitious materials. The purpose of the paper is to describe the prospects of two of the most popular micro-observation techniques, i.e. with the use of an optical and scanning electron microscope. In addition, it describes the advantages of using a tensile stage mounted in the microscope chamber for testing self-healing materials. The advantages and disadvantages of these devices have been characterized, and the results of preliminary research have been provided. The tests include the optical microscopy and scanning electron microscopy observations of the microstructure of cracks before and after the process of healing. They were carried out using ZEISS Discovery V20 optical microscope and ZEISS EVO-MA 10 scanning electron microscope on mortar samples modified with macro capsules filled with polymer. In addition to observations, chemical analysis was performed with the use of an EDS detector. The microscopic observations and chemical analyses provide the basis for assessing the effectiveness of the self-healing process, showing that the crack has been healed. Moreover, the preliminary results of the tests of micro-mechanical properties, carried out with the use of a tensile stage, have been described. The problems of using this research technique are also listed. This study shows the usefulness of this kind of tests for microcapsules for self-healing materials.

2015 ◽  
Vol 24 (6) ◽  
pp. 061109 ◽  
Author(s):  
Lucas Drumetz ◽  
Mauro Dalla Mura ◽  
Samuel Meulenyzer ◽  
Sébastien Lombard ◽  
Jocelyn Chanussot

2012 ◽  
Vol 457-458 ◽  
pp. 270-273
Author(s):  
Yi You Tu ◽  
Guo Zhong Li

Effect of superheat and initial rolling temperature on the morphology and distribution of sulfide in non quenched and tempered free cutting steel 30MnVS has been studied by optical microscope and scanning electron microscope. Results show that proper superheat and initial rolling temperature can turn rod-shaped sulfide into massive or globular sulfide,to alleviate sulfide segregation and pro-eutectoid ferrite distribution along the boundary of pearlite clusters in 30MnVS , increase the intragranular ferrite content and optimize the structure of continuous casting slab.


2016 ◽  
Vol 850 ◽  
pp. 101-106 ◽  
Author(s):  
Shu Mei Li ◽  
Jian Jun Yang ◽  
Wei Dong Zhang ◽  
August Chang ◽  
Cai Xia Zhang ◽  
...  

Premature fracture of an axle under torsional load occurred after a tracked military tank had experienced field testing for only 80 kilometers. Visual metallographic examinations were performed with optical microscope (OM) and scanning electron microscope (SEM). The investigation demonstrates that the premature fracture is caused by metallurgical problems inside the axle where the primary and secondary cracks originate, propagate, and eventually result in final catastrophic rupture through torsional fatigue. The failure mechanism is summarized and improvement of the fatigue lifetime for the axle is recommended.


2022 ◽  
Vol 905 ◽  
pp. 30-37
Author(s):  
Shu Lan Zhang ◽  
Xiao Dan Zhang ◽  
Hai Feng Xu ◽  
Chang Wang

Effect of microstructure size and type on the hardness for the duplex steel were disclosed by using of optical microscope (OM), scanning electron microscope (SEM) and nanoindenter for the samples hot compressed under different temperature with reduction of 10%, 30%, 50% and 70%. OM and SEM were used to measure the average martensite lamellar width, space and indenter morphology. nanoindenter test characterized the microstructure hardness for the samples under different process. Experiment results show that martensite hardness for the sample hot compressed at 950°C has larger diversity than that of sample hot compressed at 1200°C. The martensite hardness fluctuation range for the sample compressed at 950°C is almost from about 7GPa to 12GPa, while, for the sample compressed at 1200°C, the fluctuation range is basically from about 9GPa to 12GPa. However, the average hardness for the samples hot compressed at 950°C is comparably smaller, which is related with lower quench temperature. The larger martensite hardness fluctuation is mainly related with induced ferrite formation and finer martensite lamellar width. For the ferrite phase, the hardness fluctuation range is lower.


2021 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Mihailo Mrdak ◽  
Darko Bajić ◽  
Darko Veljić ◽  
Marko Rakin

In this paper we will describe the process of the deposition of thick layers of VPS-Ti coating, which is used as a bonding layer for the upper porous Ti coatings on implant substrates. In order to deposit the powder, we used HÖGANÄS Ti powder labelled as AMPERIT 154.086 -63 µm. In order to test the mechanical properties and microstructure of the VPS-Ti coating, the powder was deposited on Č.4171 (X15Cr13 EN10027) steel substrates. Mechanical tests of the microhardness of the coating were performed by the Vickers hardness test method (HV0.3) and tensile strength by measuring the force per unit area (MPa). The microhardness of the coating is 159 HV0.3, which is consistent with the microstructure. The coating was found to have a good bond strength of 68 MPa. The morphology of the powder particles was examined on a scanning electron microscope. The microstructure of the coating, both when deposited and etched, was examined with an optical microscope and a scanning electron microscope. By etching the coating layers, it was found that the structure is homogeneous and that it consists of a mixture of low-temperature and high-temperature titanium phases (α-Ti + β-Ti). Our tests have shown that the deposited layers of Ti coating can be used as a bonding layer for porous Ti coatings in the production of implants.


Fibers ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 52 ◽  
Author(s):  
Oliviero Baietto ◽  
Mariangela Diano ◽  
Giovanna Zanetti ◽  
Paola Marini

The main objective of this work is the evaluation of the morphology change in tremolite particles before and after a grinding process. The crushing action simulates anthropic alteration of the rock, such as excavation in rocks containing tremolite during a tunneling operation. The crystallization habit of these amphibolic minerals can exert hazardous effects on humans. The investigated amphibolic minerals are four tremolite samples, from the Piedmont and Aosta Valley regions, with different crystallization habits. The habits can be described as asbestiform (fibrous) for longer and thinner fibers and non-asbestiform (prismatic) for prismatic fragments, also known as “cleavage” fragments. In order to identify the morphological variation before and after the grinding, both a phase contrast optical microscope (PCOM) and a scanning electron microscope (SEM) were used. The identification procedure for fibrous and prismatic elements is related to a dimensional parameter (length–diameter ratio) defined by the Health and Safety Executive. The results highlight how mineral comminution leads to a rise of prismatic fragments and, therefore, to a potentially safer situation for worker and inhabitants.


1972 ◽  
Vol 26 (2) ◽  
pp. 247-251 ◽  
Author(s):  
William P. Norris ◽  
Allen L. Olsen ◽  
Richard G. Brophy

The monomolecular layer of water adsorbed on KBr particles is responsible for clouding of disks pressed from finely ground powder. Cloudiness is caused by formation of a multitude of cracks in the disk. The initial cracking can be observed with a low power optical microscope and the extensive cracking in the fully cloudy region is observable with a scanning electron microscope. It is suggested that adsorbed water promotes recrystallization, generating weak zones in the workhardened, elastically stressed disk which fails by cracking.


Sign in / Sign up

Export Citation Format

Share Document