scholarly journals Identifikasi Escherichia coli Penyebab Waterborne Disease pada Air Mimun Kemasan dan Air Mimunm Isi Ulang

2020 ◽  
Vol 12 (2) ◽  
pp. 634-639
Author(s):  
Gusti Rizka Khairunnida ◽  
Hetti Rusmini ◽  
Esteria Maharyuni ◽  
Efrida Warganegara

Abstrak. Latar Belakang : Depot air minum isi ulang dan air minum kemasan banyak didapati pada daerah perkotaan yang didorong oleh tingginya kebutuhan masyarakat akan air, baik untuk minum maupun dalam kebutuhan sehari-hari lainnya. Air yang terkontaminasi jika dikonsumsi akan menimbulkan suatu penyakit. Tujuan : Mengetahui cemaran bakteri Escherichia coli penyebab waterborne disease pada air minum isi ulang dan air minum kemasan di Kelurahan Kemiling Raya dengan cara peyaringan kemudian mengisolasi dan mengidentifikasi pada media selektif diferensial. Metode : Desain penelitian deskriptif dengan pendekatan kulitatif eksperimetal. Sampel air minum isi ulang dan air minum kemasan disaring dengan penyarig membran kemudia diinkubasi pada media selektif deferensial Chromogenic Coliform Agar untuk mengetahui adanya cemaran bakteri Escherichia coli penyebab waterborne disease. Hasil : Terdapat koloni bakteri Escherichia coli penyebab waterborne disease pada air minum isi ulang pada sampel X, Y, dan Z dengan masing-masing memiliki jumlah 2,4 x 102 cfu/100ml, 6,8 x102 cfu/100ml dan sampel Z memiliki jumlah koloni yang sangat banyak sehingga dikategorikan TBUD, sedangkan untuk sampel W tidak terdapat koloni bakteri. Pada sampel air minum kemasan A dan B memiliki jumlah koloni bakteri Escherichia coli yang sama yaitu sebanyak 2,0 x 100 cfu/250ml. Kesimpulan : Jumlah koloni bakteri Escherichia coli pada sampel air minum isi ulang lebih besar dari pada air minum kemasan. Tidak terdapat bakteri Escherichia coli penyebab waterborne disease pada air minum isi ulang yang menggunakan teknologi reserved osmosis.

Jurnal Dampak ◽  
2014 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Puti Sri Komala

Air sumur merupakan salah satu sumber air minum terpenting bagi masyarakat, terutama bagi mereka yang tidak dilayani oleh pelayanan kota. Adanya kandungan bakteri Escherichia coli dalam air sumur dapat menjadi penyebab waterborne disease. Kaporit merupakan jenis disinfektan yang dapat digunakan untuk menyisihkan kandungan bakteri E.coli di dalam air sumur. Dalam percobaan ini dilakukan disinfeksi pada larutan artifisial dan sampel air sumur kawasan Purus. Pada percobaan larutan artifisial diperoleh dosis optimum kaporit yaitu 50 mg/l dengan waktu kontak 30 menit untuk menyisihkan bakteri E.coli dari >1,6.105 sel/100 ml menjadi 0 sel/100 ml. Laju inaktivasi bakteri E.coli pada waktu kontak 10 menit untuk tiap dosis kaporit berkisar antara 2,6-log-3-log. Disinfeksi sampel air sumur kawasan Purus pada kondisi optimum menunjukkan hasil yang tidak jauh berbeda dengan disinfeksi larutan artifisial.Kata Kunci: air sumur, disinfektan, E.coli, larutan artifisial


2019 ◽  
Vol 6 (2) ◽  
pp. 141
Author(s):  
Yuli Haryani ◽  
Emma Susanti ◽  
Hexsha Rizki Amelia

Waterborne-disease masih memberikan angka prevalensi yang tinggi terutama di negara sedang berkembang. Keberadaan E. coli di perairan memberikan indikasi adanya cemaran pathogen dari feses hewan ataupun manusia. Penelitian ini bertujuan untuk menganalisa kekerabatan dan indeks resistensi antimikroba dari E.coli yang telah diisolasi dari DAS Siak, sungai terbesar yang melewati Provinsi Riau, yang masih digunakan oleh sebagian warga untuk aktivitas sehari-hari. Dendrogram yang dihasilkan dari gabungan 3 primer RAPD-PCR mampu membedakan tiap isolate uji. Intensitas penggunaan air sungai oleh warga dan kuatnya arus mempengaruhi distribusi mikroba indicator sanitasi tersebut dari Tapung hingga Perawang. Sifat resistensi antibiotika masih tergolong rendah (MAR index 0,142), namun eritromisin bukan merupakan antibiotika pilihan untuk diare akibat E.coli disebabkan seluruh isolate resisten terhadap antibiotika ini.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document