Detecting polarization state of arbitrary polarized light by chiral plasmonic lenses with distributed nanoslits

2020 ◽  
Vol 13 (2) ◽  
pp. 022011
Author(s):  
Baifu Zhang ◽  
Chenchen Sha ◽  
Jianping Ding
Author(s):  
Kannan M. Krishnan

Propagation of light is described as the simple harmonic motion of transverse waves. Combining waves that propagate on orthogonal planes give rise to linear, elliptical, or spherical polarization, depending on their amplitudes and phase differences. Classical experiments of Huygens and Young demonstrated the principle of optical interference and diffraction. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals forms the basis of diffraction methods. Fresnel diffraction finds application in the design of zone plates for X-ray microscopy. Optical microscopy, with resolution given by the Rayleigh criterion to be approximately half the wavelength, works best when tailored to the optimal characteristics of the human eye (λ = 550 nm). Lenses suffer from spherical and chromatic aberrations, and astigmatism. Optical microscopes operate in bright-field, oblique, and dark-field imaging conditions, produce interference contrast, and can image with polarized light. Variants include confocal scanning optical microscopy (CSOM). Metallography, widely used to characterize microstructures, requires polished or chemically etched surfaces to provide optimal contrast. Finally, the polarization state of light reflected from the surface of a specimen is utilized in ellipsometry to obtain details of the optical properties and thickness of thin film materials.


2016 ◽  
Vol 25 (11) ◽  
pp. 1603001
Author(s):  
Wei-Tou Ni

Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell–Lorentz electrodynamics. Introducing the metric [Formula: see text] as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the ultrahigh precision empirical tests of nonbirefringence together with present status of tests of cosmic Abelian axion and dilaton. If the stronger version of WEP is assumed, i.e. WEP II for photons (wave packets of light) which states in addition to WEP I also that the polarization state of the light would not change (e.g. no polarization rotation for linear polarized light) and no amplification/attenuation of light, then no Abelian (EM) axion and no dilaton, and we have a pure metric theory.


2010 ◽  
Vol 428-429 ◽  
pp. 111-116
Author(s):  
Wen Jun Yang ◽  
Guo Zhu Liu ◽  
Ji Min Wang ◽  
Du Ling Xia

Birefringence of a polymer is caused by polymer chain orientation during an injection-molding, extrusion processing or heat drawing. Birefringence of polymers degrades the performance of optical devices that require focusing by lenses or maintaining the polarization state of incident light. Optical polymers which exhibit no birefringence with any orientation of polymer chains are desirable to realize high performance optical devices that handle polarized light. In this study we demonstrate the random copolymerization method for synthesizing the zero-birefringence polymers in which positive and negative birefringence homopolymer are blended. We synthesize a polymer that exhibits no orientational birefringence with any orientation degree in a system that is composed of Methyl methacrylate/Styrene/Benzyl methacrylate.


2011 ◽  
Vol 201-203 ◽  
pp. 1590-1595
Author(s):  
Mu Zhun Zhou ◽  
Yan Ru Chen ◽  
Qi Zhao ◽  
Yu Xin

Principle of polarization encoding based on electro-optic effect of LiNbO3 crystal is analyzed, effact on polarization encoding optical field effects is studied when the incident light direction changes. Theoretical calculations show that, with the angle between the direction of incident laser beam and the main axis of LiNbO3 crystal increases, rotation angle of polarization ellipse remain unchanged,but ellipticity changes at any other position except in the center of the encoder,at the top and bottom of encoder,polarization state changes from circularly polarized to elliptically polarized,at other position of the encoder, polarization states are still elliptically polarized light but with different ellipticity angle. Experiment measurement results are in accord with ones of the calculation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3098
Author(s):  
Boyu Zhang ◽  
Sixiang Zhao ◽  
Yingying Yu ◽  
Ming Li ◽  
Liancheng Zhao ◽  
...  

Circularly polarized light (CPL) detection and polarization state recognition are required for a wide range of applications. Conventional polarization detection with optical components causes difficulties for miniaturization and integration. An effective design strategy is proposed for direct CPL detection with chiral material. Here, we realized direct CPL detection based on the combination of chiral photonic cellulose nanocrystal (CNC) and ultraviolet-sensitive ZnO photoconductive material. The CNC layer deposited by evaporation-induced self-assembly established the left-handed chiral nematic structure with a photonic bandgap (PBG) to recognize left-handed CPL (LCPL) and right-handed CPL (RCPL) at specific wavelengths. The PBG of CNC layer has been modulated by the adjustment of chiral nematic pitch to match the semiconductor bandgap of ZnO film in ultraviolet region. The photocurrents under RCPL and LCPL are 2.23 × 10−6 A and 1.77 × 10−6 A respectively and the anisotropy factor Δgpc of 0.23 is acquired for the CPL detection based on the chiral photonic CNC. This design provides a new approach to the detection of CPL polarization state with competitive performance.


2018 ◽  
Vol 9 (1) ◽  
pp. 20180052 ◽  
Author(s):  
Sébastien R. Mouchet ◽  
Charlotte Verstraete ◽  
Dimitrije Mara ◽  
Stijn Van Cleuvenbergen ◽  
Ewan D. Finlayson ◽  
...  

Upon illumination by ultraviolet light, many animal species emit light through fluorescence processes arising from fluorophores embedded within their biological tissues. Fluorescence studies in living organisms are however relatively scarce and so far limited to the linear regime. Multiphoton excitation fluorescence analyses as well as nonlinear optical techniques offer unique possibilities to investigate the effects of the local environment on the excited states of fluorophores. Herein, these techniques are applied for the first time to study of the naturally controlled fluorescence in insects. The case of the male Hoplia coerulea beetle is investigated because the scales covering the beetle’s elytra are known to possess an internal photonic structure with embedded fluorophores, which controls both the beetle’s coloration and the fluorescence emission. An intense two-photon excitation fluorescence signal is observed, the intensity of which changes upon contact with water. A third-harmonic generation signal is also detected, the intensity of which depends on the light polarization state. The analysis of these nonlinear optical and fluorescent responses unveils the multi-excited states character of the fluorophore molecules embedded in the beetle’s elytra. The role of form anisotropy in the photonic structure, which causes additional tailoring of the beetle’s optical responses, is demonstrated by circularly polarized light and nonlinear optical measurements.


1988 ◽  
Vol 66 (9) ◽  
pp. 2229-2233 ◽  
Author(s):  
Anna M. Ritcey ◽  
Gérard Charlet ◽  
Derek G. Gray

The apparent circular dichroism arising from the selective reflection of circularly polarized light by cholesteric films of (hydroxypropyl)cellulose is extremely sensitive to residual linear orientation. The introduction of a uniaxially oriented film in the spectropolarimeter beam in front of a liquid crystalline sample may change both the intensity and the sign of the observed mesophase reflection band. The results can be understood by a simple consideration of the way in which the polarization state of light is altered as it traverses the birefringent film. These observations emphasize a potential problem in the use of circular reflectivity as a method to characterize the reflection properties of polymeric cholesteric liquid crystals. The presence of linear orientation in such samples can give rise to artifacts.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
H. Wang ◽  
U. H. Wagner ◽  
S. S. Dhesi ◽  
K. J. S. Sawhney ◽  
F. Maccherozzi ◽  
...  

With modern undulators generating light of an arbitrary polarization state, experiments exploiting this feature in the soft X-ray region are becoming increasingly widespread. Circularly polarized light in the soft X-ray region is of particular interest to investigate of magnetic metals such as Fe, Co and Ni, and the rare earths. A versatile multilayer polarimeter has been designed and developed to characterize the polarization state of the soft X-ray beam. A W/B4C multilayer transmission phase retarder and reflection analyser has been used for polarimetry measurements on the beamline (I06) at Diamond Light Source. The design details of the polarimeter and preliminary polarimetry results are presented.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongkang Song ◽  
Weici Liu ◽  
Xiaolei Wang ◽  
Faqiang Wang ◽  
Zhongchao Wei ◽  
...  

Metasurfaces have powerful light field manipulation capabilities, which have been extensively studied in the past few years and have developed rapidly in various fields. At present, the focus of metasurface research has shifted to the tunable functionality. In this paper, a temperature-controllable multifunctional metasurface lens based on phase transition material is designed. First of all, by controlling the temperature of the desired working area and the polarization of the incident light, switching among multiple focus, single focus, and no focus at any position can be achieved, and the intensity and helicity of the output light can be adjusted. In addition, a polarization-sensitive intensity-tunable metalens based on the P-B phase principle is designed, when the incident light is linearly polarized light, left-handed circularly polarized light, or right-handed circularly polarized light, it has the same focal point but with different light field intensities. Therefore, the focused intensity can be tunable by the polarization state of the incident light.


Sign in / Sign up

Export Citation Format

Share Document