scholarly journals On spacetime structure and electrodynamics

2016 ◽  
Vol 25 (11) ◽  
pp. 1603001
Author(s):  
Wei-Tou Ni

Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell–Lorentz electrodynamics. Introducing the metric [Formula: see text] as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the ultrahigh precision empirical tests of nonbirefringence together with present status of tests of cosmic Abelian axion and dilaton. If the stronger version of WEP is assumed, i.e. WEP II for photons (wave packets of light) which states in addition to WEP I also that the polarization state of the light would not change (e.g. no polarization rotation for linear polarized light) and no amplification/attenuation of light, then no Abelian (EM) axion and no dilaton, and we have a pure metric theory.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3436
Author(s):  
Shaobo Ge ◽  
Weiguo Liu ◽  
Xueping Sun ◽  
Jin Zhang ◽  
Pengfei Yang ◽  
...  

In this paper, comprehensively utilizing the diffraction theory and electromagnetic resonance effect is creatively employed to design a multifunctional metasurface zone plate (MMZP) and achieve the control of polarization states, while maintaining a broadband achromatic converging property in a near-IR region. The MMZP consists of several rings with fixed width and varying heights; each ring has a number of nanofins (usually called meta-atoms). The numerical simulation method is used to analyze the intensity distribution and polarization state of the emergent light, and the results show that the designed MMZP can realize the polarization manipulation while keeping the broadband in focus. For a specific design wavelength (0.7μm), the incident light can be converted from left circularly polarized light to right circularly polarized light after passing through the MMZP, and the focusing efficiency reaches above 35%, which is more than twice as much as reported in the literature. Moreover, the achromatic broadband focusing property of the MMZP is independent with the polarization state of the incident light. This approach broadens degrees of freedom in micro-nano optical design, and is expected to find applications in multifunctional focusing devices and polarization imaging.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Three basic models of the intracrystalline sorbed state are discussed: a localized phase, a mobile phase possessing two translational degrees of freedom, and a mobile phase with one translational degree of freedom. The isotherm and entropy of each of these models have been investigated for the ideal phase, and where possible the influence of sorbate-sorbate interactions has been considered. Expressions for the molal and differential entropies of each model are given as a function of sorbate concentration. The method of comparing theoretical isotherms and entropies with experimental observations is outlined.


2014 ◽  
Vol 926-930 ◽  
pp. 2054-2057
Author(s):  
Jun Hui He

This paper proposed customers to participate typology based on three dimensions, which are the customers’ autonomy in the process, the nature of the firm‐customer collaboration, and the stage of the innovation process. Then proposed customers to participate in the type of open innovation framework. Through the static comparative and dynamic evolution simulation found: customers tend to be open to participate in the development of new products pre innovation, the tendency to begin to choose the low participation of degrees of freedom, and ultimately tend to opt for a high degree of freedom to participate.


2004 ◽  
Vol 11 (04) ◽  
pp. 401-409
Author(s):  
Marcin Turek ◽  
Piotr Rozmej

Time evolution of radial wave packets built from the eigenstates of Dirac equation for a hydrogenic system is considered. Radial wave packets are constructed from the states of different n quantum numbers and the same lowest angular momentum. In general they exhibit a kind of breathing motion with dispersion and (partial) revivals. Calculations show that for some particular preparations of the wave packet one can observe interesting effects in spin motion, coming from inherent entanglement of spin and orbital degrees of freedom. These effects manifest themselves through some oscillations in the mean values of spin operators and through changes of spatial probability density carried by upper and lower components of the wave function. It is also shown that the characteristic time scale of predicted effects (called T ls ) is much smaller for radial wave packets than in other cases, reaching values comparable to (or even less than) the time scale for the wave packet revival.


1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.


Author(s):  
Sridhar Kota ◽  
Srinivas Bidare

Abstract A two-degree-of-freedom differential system has been known for a long time and is widely used in automotive drive systems. Although higher degree-of-freedom differential systems have been developed in the past based on the well-known standard differential, the number of degrees-of-freedom has been severely restricted to 2n. Using a standard differential mechanism and simple epicyclic gear trains as differential building blocks, we have developed novel whiffletree-like differential systems that can provide n-degrees of freedom, where n is any integer greater than two. Symbolic notation for representing these novel differentials is also presented. This paper presents a systematic method of deriving multi-degree-of-freedom differential systems, a three and four output differential systems and some of their practical applications.


1969 ◽  
Vol 59 (4) ◽  
pp. 1591-1598
Author(s):  
G. A. McLennan

Abstract An exact method is developed to eliminate the accelerometer error in dynamic response calculations for damped multi-degree of freedom systems. It is shown that the exact responses of a system can be obtained from the approximate responses which are conventionally calculated from an accelerogram. Response calculations were performed for two typical systems with three degrees of freedom for an assumed pseudo-earthquake. The results showed that the approximate responses may contain large errors, and that the correction developed effectively eliminates these errors.


Sign in / Sign up

Export Citation Format

Share Document