scholarly journals Environmental Performances and Biological Toxicity of Snowpack Water

This work analyzes the state of snowpack in Nizhny Novgorod on the basis of certain chemical performances and integral biological toxicity. Snow samples were obtained in February 2018 along major highways of Nizhny Novgorod. A snow-covered area in Dubrava forestry was selected as reference. The studies demonstrated that the snowpack was characterized by very high concentrations of chlorides and sulfides: in sampling points of the Lower City, the content of chlorides and sulfates varied in the ranges of 24.67–62.36 mg/l and 30.16–62.09 mg/l, respectively, and in sampling points of the Upper City, this variability was 416.82–988.45 mg/l and 280.11–879.22 mg/l, respectively. The content of lead in snowpack in both the Lower City and the Upper City was approximately the same (0.0053 and 0.0048 mg/l). The minimum content of pollutants in snow samples from reference site was characterized by toxicity (10%, V = 6.0%) which was estimated as allowable (toxicity class 1). Snowpack water from the Lower City was characterized generally by medium toxicity (class 2), and sampled in the Upper City – by acute toxicity (59%, V = 26.5%), with regard to the reference (class 3).

2003 ◽  
Vol 34 (4) ◽  
pp. 281-294 ◽  
Author(s):  
R.V. Engeset ◽  
H-C. Udnæs ◽  
T. Guneriussen ◽  
H. Koren ◽  
E. Malnes ◽  
...  

Snowmelt can be a significant contributor to major floods, and hence updated snow information is very important to flood forecasting services. This study assesses whether operational runoff simulations could be improved by applying satellite-derived snow covered area (SCA) from both optical and radar sensors. Currently the HBV model is used for runoff forecasting in Norway, and satellite-observed SCA is used qualitatively but not directly in the model. Three catchments in southern Norway are studied using data from 1995 to 2002. The results show that satellite-observed SCA can be used to detect when the models do not simulate the snow reservoir correctly. Detecting errors early in the snowmelt season will help the forecasting services to update and correct the models before possible damaging floods. The method requires model calibration against SCA as well as runoff. Time-series from the satellite sensors NOAA AVHRR and ERS SAR are used. Of these, AVHRR shows good correlation with the simulated SCA, and SAR less so. Comparison of simultaneous data from AVHRR, SAR and Landsat ETM+ for May 2000 shows good inter-correlation. Of a total satellite-observed area of 1,088 km2, AVHRR observed a SCA of 823 km2 and SAR 720 km2, as compared to 889 km2 using ETM+.


1984 ◽  
Vol 49 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Jiří Čeleda ◽  
Stanislav Škramovský

Based on the earlier paper introducing a concept of the apparent parachor of a solute in the solution, we have eliminated in the present work algebraically the effect which is introduced into this quantity by the additivity of the apparent molal volumes. The difference remaining from the apparent parachor after substracting the contribution corresponding to the apparent volume ( for which the present authors suggest the name metachor) was evaluated from the experimental values of the surface tension of aqueous solutions for a set of 1,1-, 1,2- and 2,1-valent electrolytes. This difference showed to be independent of concentration up to the very high values of the order of units mol dm-3 but it was directly proportional to the number of the free charges (with a proportionality factor 5 ± 1 cm3 mol-1 identical for all studied electrolytes). The metachor can be, for this reason, a suitable characteristic for detection of the association of ions and formation of complexes in the solutions of electrolytes, up to high concentrations where other methods are failing.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1607
Author(s):  
Mariano Venturini ◽  
Ariana Rossen ◽  
Patricia Silva Paulo

To produce nuclear fuels, it is necessary to convert uranium′s ore into UO2-ceramic grade, using several quantities of kerosene, methanol, nitric acid, ammonia, and, in low level, tributyl phosphate (TBP). Thus, the effluent generated by nuclear industries is one of the most toxic since it contains high concentrations of dangerous compounds. This paper explores biological parameters on real nuclear wastewater by the Monod model in an ORP controlled predicting the specific ammonia oxidation. Thermodynamic parameters were established using the Nernst equation to monitor Oxiders/Reductors relationship to obtain a correlation of these parameters to controlling and monitoring; that would allow technical operators to have better control of the nitrification process. The real nuclear effluent is formed by a mixture of two different lines of discharges, one composed of a high load of nitrogen, around 11,000 mg/L (N-NH4+-N-NO3−) and 600 mg/L Uranium, a second one, proceeds from uranium purification, containing TBP and COD that have to be removed. Bioprocesses were operated on real wastewater samples over 120 days under controlled ORP, as described by Nernst equations, which proved to be a robust tool to operate nitrification for larger periods with a very high load of nitrogen, uranium, and COD.


Author(s):  
Mario Vincenzo Russo ◽  
Ivan Notardonato ◽  
Alberto Rosada ◽  
Giuseppe Ianiri ◽  
Pasquale Avino

This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid–liquid extraction and static headspace) followed by gas chromatography–electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L−1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g−1), antimony (77.7 µg g−1), strontium (12,039 µg g−1) and zinc (103 µg g−1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g−1): the levels found in this paper (ranging between 1 and 5100 µg g−1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area.


1960 ◽  
Vol 38 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Ivan T. Beck ◽  
E. Pinter ◽  
R. D. McKenna ◽  
H. Griff

Acute hemorrhagic pancreatitis in humans is thought to be perpetuated by the autolytic processes catalyzed by trypsin and lipase. This study is an integral part of our search for trypsin and lipase inhibitors to be used in the treatment of this disease.Benzethonium chloride was found to inhibit tryptic activity in vitro. The proteolytic activity of rabbit's serum was inhibited, and the inhibition was most pronounced 6 to 12 hours after the subcutaneous injection of the compound. Fibrinolysin was also inhibited in vitro but benzethonium chloride had no inhibitory action on chymotrypsin, pepsin, or lipase.Serum proteins in vitro were precipitated only with very high concentrations of the compound. No significant protein changes were observed in sera of rabbits after the subcutaneous injection of the compound.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


2007 ◽  
Vol 13 (2) ◽  
pp. 213-218
Author(s):  
Thomas W. Stief

Serine protease inactivators (serpins) are important regulators in biochemistry. Often it is necessary to block the serpin action, that is, to stabilize the sample. The guanidine group of arginine is the ligand for the active center pocket of many serine proteases. Arginine or guanidine inhibits serine proteases, and arginine belongs to the reactive P1-P1' center of many serpins. The plasmatic antithrombin, antiplasmin, or anti-C1-esterase activity was determined: A total of 20 µL of pooled normal plasma or 7% human albumin was added to 100 µL of 0—2.67 M arginine, pH 8.6, 10 µL of 26 mIU/mL thrombin in 7% human albumin, and 30 µL of 1.7 mM CHG-Ala-Arg-pNA (37°C). ΔA at 405 nm was determined, by using a microtiter plate reader. Thrombin was substituted by plasmin or C1-esterase, and the chromogenic peptide substrates <Glu-Phe-Lys-pNA or MeOC-Lys(eCBO)-Gly-Arg-pNA, respectively, were used. The IC50 of arginine against plasmatic antithrombin activity is 580 mM; the IC 25 is 440 mM. The IC25 of arginine against plasmatic α 2-antiplasmin or C1-inactivator is 1650 mM. The amidolytic activity of thrombin, plasmin, and C1-esterase is inhibited similarly by arginine: the IC50 for arginine against the amidolytic activity of these proteases is about 400 mM. Arginine at very high concentrations inhibits serpins. This is important, if stabilization of a biological fluid is a prerequisite for valid activities of serine proteases. In addition, these high concentrations of arginine might be a new gentle principle to inhibit pathogens that need serpins for their pathophysiology.


2002 ◽  
Vol 82 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Sari Metsämäki ◽  
Jenni Vepsäläinen ◽  
Jouni Pulliainen ◽  
Yrjö Sucksdorff

1979 ◽  
Vol 105 (1) ◽  
pp. 53-66
Author(s):  
Albert Rango ◽  
A. Jean Brown ◽  
Michael Rosenzweig ◽  
Jack F. Hannaford ◽  
Roderick L. Hall

1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


Sign in / Sign up

Export Citation Format

Share Document