scholarly journals Design Modifications in RF Interaction Cavity of a 140 GHZ Gyrotron to Achieve Wide Tunable Bandwidth for DNP NMR Applications

The tapered RF interaction cavity of 140 GHz tunable continuous wave (CW) gyrotron operating in TE0,3,q mode has been tailored with the aim of providing RF power over a tunable bandwidth for 212 MHz DNP NMR spectroscopy applications. Gyrotron device RF interaction cavity design, its beam absent RF characteristics as well as electron beam and RF wave interaction behavior, both analytical and Particle-in-Cell (PIC) simulation studies have been presented. Using linear analysis, the start oscillation currents and the RF field profiles for the various axial operating modes indices q = 1, 2, 3 have been determined. Suitable modifications in the interaction cavity have been incorporated for the enhancement of device tunable bandwidth by operating the gyrotron in the high order axial indices via magnetic tuning. Gyrotron beam-wave interaction behaviour explored using time dependent non-linear multi-mode analysis for various beam currents and magnetic fields and more than >15W of RF power over a tunable bandwidth of 400MHz has been achieved through magnetic field tuning. This tunable bandwidth gyrotron design will of immense use for enhancement of sensitivity of the DNP NMR spectroscopy.

2014 ◽  
Author(s):  
Donald MacPherson ◽  
Elizabeth Boyd

The maritime industry is in a mindset to save fuel and reduce emissions. How one achieves this end, however, can be a matter of some debate. While substantial industry effort is being placed on things that can be optimized, to achieve real benefit and financial return one must first understand the details about how the vessel consumes propulsive energy during its mission. This paper discusses a rational, simple, and effective systems engineering approach to identify power and fuel demands via computational propulsion analysis of the individual operating modes of a vessel’s duty cycle. It explains sensible consumption metrics that can be used to evaluate and compare different physical systems, strategic plans, or helm decisions. A duty cycle operating mode analysis calculation for a tugboat in multi-role service (as a harbor tug and in long haul ocean barge towing) is demonstrated using COTS software, including examples of design-side and shipboard decision options and consequences.


2017 ◽  
Vol 33 ◽  
pp. 422-428
Author(s):  
James C. Korte ◽  
Kelvin J. Layton ◽  
Bahman Tahayori ◽  
Peter M. Farrell ◽  
Stephen M. Moore ◽  
...  

2020 ◽  
Author(s):  
Jose Antonio Manrique-Martinez ◽  
Marco Veneranda ◽  
Guillermo Lopez-Reyes ◽  
Aurelio Sanz-Arranz ◽  
Jesus Saiz ◽  
...  

<p>Raman Spectroscopy is an analytical technique that will be deployed on Mars in the following years and could be part of other payloads for planetary exploration missions in the future. Its ability for identification of mineral phases and its interest in Mars has been deeply discussed in bibliography [1]. Perseverance rover, to be launched in 2020, and ExoMars rover, to be launched in 2022, will carry three Raman instruments, different in concept and capabilities. SHERLOC (mounted on Perseverance’s arm) is a UV Raman instrument mainly focused in the direct detection of biomarkers, SuperCam (mounted on Perseverance’s mast) is a standoff, multi-technique, instrument that performs Raman and LIBS at distances of several meters from the rover. Finally, RLS, mounted in Rosalind Franklin Rover, in the Pasteur analytical laboratory, is a continuous wave, 532 nm excitation source Raman instrument. While the first one is focused in detection limits of organics, RLS is intended to investigate mineralogy and possible biomarkers, while SuperCam, due to its standoff and time resolved design, is a different concept to que other two Raman instruments, as it is also capable of fusing data from different techniques.</p> <p> </p> <p>Carbonates are minerals of great interest for astrobiology, and, as suggested by CRISM data, the landing site selected for the NASA/Mars 2020 rover mission (Jezero crater) presents a variety of Fe-Ca-Mg carbonate units [2]. For Oxia Planum, Rosalind Franklin’s landing site, although no carbonates have been detected in that area by orbiter data, Earth analogues suggest that small amounts of carbonates might be found in the clay rich area. On Earth, top bench Raman spectrometers can be effectively used to discriminate carbonates and to determine the Mg/Fe concentration ratio of mineral species from dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>) - ankerite (CaFe(CO<sub>3</sub>)<sub>2</sub>) and magnesite (MgCO<sub>3</sub>) - siderite (FeCO<sub>3</sub>) solid solutions series [3]. The previously mentioned instruments might present limitations derived from the design constrains of space exploration. Resolution, far from ideal, and low intensity of the signal, are two of the main factors that could affect the possible calculations done with data from the three Raman instruments. SuperCam is a special case, as it is able to obtain data from several techniques from the same spot of the sample, and that might help to overcome those difficulties.</p> <p> </p> <p>In this work a complete set of Ca-Mg-Fe carbonates is analysed by different Raman instruments, including automated contact instruments and combined standoff developments. The initial characterization of the samples is done with XRD, as gold standard. Then, a characterization of all those carbonates based only on Raman data sets was done, aiming to evaluate the impact of resolution in the classification power of Raman-based calculations. A detailed vibrational mode analysis was carried out for interpreting the structural modifications induced by cationic substitution. Here, after a detailed interpretation it was found that Raman active internal modes are less sensitive to the carbonate chemistry than the external modes (i.e. the 155cm-1 and 286cm-1 respectively).</p> <p> </p> <p>Same collection of carbonates is analysed using standoff Raman-LIBS combination. In this case we will evaluate how having the complementary information of the elemental composition improves the results obtained by standoff Raman spectroscopy [4], as LIBS is more sensitive to the possible changes in the cations in the samples. Using these data sets, a combination of univariate and multivariate calculations are done to evaluate their classification capacity. As commented before, LIBS can classify better these minerals thanks to its lower detection limit and a better functionality in standoff configuration. However, the effect from other phases, different from carbonates, might disturb the LIBS calculations, reason why having an assessment of all the phases in play by Raman spectroscopy is of great interest, supporting the idea of the power of technique combination.</p> <p>1    F. Rull, S. Maurice, I. Hutchinson et al. Astrobiology, Vol. 17 (2017), No. 6-7</p> <p>2    B.H.N. Horgan, R.B. Anderson, G. Dromart, E.S. Amador, M.S. Rice Icarus, <strong>339 </strong>(2020) 113526.</p> <p>3    P. Kristova, L. Hopkinson, K. Rutt, H. Hunter, G. Cressey, American Mineralogist, <strong>98</strong> (2013) 401-409.</p> <p>4    J.A. Manrique-Martinez et al. Journal of Raman Spectroscopy (2020) 1-16.</p>


Author(s):  
Priyanka Chandra ◽  
Swastika Ganguly ◽  
Rajdeep Dey ◽  
Biswatrish Sarkar

Introduction: In the present study a novel series of twelve 1-(aryl)-2-(1H-imidazol-1-yl)methanones 3(a-l) were synthesized and characterised by physicochemical and spectral analysis,viz. elemental analysis, IR spectroscopy, NMR spectroscopy. The antibacterial property of the compounds were examined, in order to develop new broad spectrum antibiotics. Methods: The compounds 3(a-l) were synthesised by reacting the corresponding 2-(aryl)-1H-imidazoles 2 with substituted benzoyl chlorides. Binding mode analysis of the most active compound was carried out. Predictive ADME studies were carried out for all the compounds. Results and Discussions: Among the synthesized compounds, (2-(3-nitrophenyl) (2,4-dichlorophenyl) -1Himidazol-1-yl)methanone 3i exhibited highest antibacterial activity. Binding mode analysis of the highest active compound was carried out in the active site of glucosamine-6-phosphate synthase (2VF5).


2004 ◽  
Vol 22 (6) ◽  
pp. 2081-2096 ◽  
Author(s):  
V. Génot ◽  
P. Louarn ◽  
F. Mottez

Abstract. Investigating the process of electron acceleration in auroral regions, we present a study of the temporal evolution of the interaction of Alfvén waves (AW) with a plasma inhomogeneous in a direction transverse to the static magnetic field. This type of inhomogeneity is typical of the density cavities extended along the magnetic field in auroral acceleration regions. We use self-consistent Particle In Cell (PIC) simulations which are able to reproduce the full nonlinear evolution of the electromagnetic waves, as well as the trajectories of ions and electrons in phase space. Physical processes are studied down to the ion Larmor radius and electron skin depth scales. We show that the AW propagation on sharp density gradients leads to the formation of a significant parallel (to the magnetic field) electric field (E-field). It results from an electric charge separation generated on the density gradients by the polarization drift associated with the time varying AW E-field. Its amplitude may reach a few percents of the AW E-field. This parallel component accelerates electrons up to keV energies over a distance of a few hundred Debye lengths, and induces the formation of electron beams. These beams trigger electrostatic plasma instabilities which evolve toward the formation of nonlinear electrostatic structures (identified as electron holes and double layers). When the electrostatic turbulence is fully developed we show that it reduces the further wave/particle exchange. This sequence of mechanisms is analyzed with the program WHAMP, to identify the instabilities at work and wavelet analysis techniques are used to characterize the regime of energy conversions (from electromagnetic to electrostatic structures, from large to small length scales). This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. It would consist of successive phases of acceleration along the magnetic field, the development of an electrostatic turbulence, the thermalization and the heating of the plasma. Space plasma physics (charged particle motion and acceleration; numerical studies).


2016 ◽  
Vol 32 (03) ◽  
pp. 174-185
Author(s):  
Donald MacPherson ◽  
Elizabeth Boyd

The maritime industry is in a mind-set to save fuel and reduce emissions. How one achieves this end, however, can be a matter of some debate. Although substantial industry effort is being placed on things that can be optimized, to achieve real benefit and financial return one must first understand the details about how the vessel consumes propulsive energy during its mission. This article discusses a rational, simple, and effective systems engineering approach to identify power and fuel demands via computational propulsion analysis of the individual operating modes of a vessel's duty cycle. It explains sensible consumption metrics that can be used to evaluate and compare different physical systems, strategic plans, or helm decisions. A duty cycle operating mode analysis calculation for a tugboat in multirole service (as a harbor tug and in long haul ocean barge towing) is demonstrated using commercial off-the-shelf software, including examples of design-side and shipboard decision options and consequences.


Sign in / Sign up

Export Citation Format

Share Document