scholarly journals Climate Change Impact on Annual and Monthly Rainfall on Bhadar River Basin, India using Linear Regression and Innovative Trend Method

Bhadar is one of the major rivers of Kathaiwar (Saurashtra) peninsula in Gujarat, India. It originates near Vaddi (Aniali Village) about 26 km north – west of Jasdan in Rajkot district of the state of Gujarat, India at an elevation of 261 m above mean sea level. Impact assessment of climate change over Bhadar river basin is carried out using two statistical methods of Trend Analysis i.e. linear Regression, and Innovative Trend method. Effect of climate change on annual rainfall and monthly rainfall are studied. Results show that there is an overall increase in annual rainfall trend in Bhadar river basin/catchment area at all stations except one station. The results for monthly rainfall show that the rainfall in the month of July and September shows increasing trend at all stations. The results obtained using Linear Regression and Innovative Trend method are found to be consistent.

2021 ◽  
Vol 23 (1) ◽  
pp. 20-27
Author(s):  
Cilcia Kusumastuti ◽  
Dicky Gode ◽  
Yobella Febe Kurnianto ◽  
Frederik Jones Syaranamual

Climate change impacts have gained great attention to be studied in various fields. In this paper, an investigation of rainfall pattern change is performed using three statistical methods, i.e., simple linear regression, t-test, and Mann-Kendall’s test. The analysis is performed at 10- and 20-year time scales of daily, monthly, and annual rainfall in Flores Island, a dry region in Indonesia. In general, an increasing monthly rainfall trend is detected in the rainy season (October – April) at a 20-year period, using all three methods. Specifically, a significant increasing trend in March 1989 – 2008 is observed, and it contributes to the significant increasing trend of annual rainfall.  The findings presented in this paper should be an alert for potential climate change impacts in the region. The positive consideration of having more rainfall in a dry region might turn into a negative reality when adaptation measures are not well-prepared.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1029 ◽  
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Duangrudee Kositgittiwong

Climate change is progressing and is now one of the most important global challenges for humanities. Water resources management is one of the key challenges to reduce disaster risk. In Northern Thailand, flood and drought have always occurred because of the climate change impact and non-systematic management in the conjunctive use of both sources of water. Therefore, this study aims to assess the climate change impact on surface water and groundwater of the Yom and Nan river basins, located in the upper part of Thailand. The surface water and groundwater regimes are generated by a fully coupled SWAT-MODFLOW model. The future climate scenarios are considered from the Representative Concentration Pathways (RCPs) 2.6 and 8.5, presented by the Coupled Model Intercomparison Project Phase 5 (CMIP5), in order to mainly focus on the minimum and maximum Green House Gas (GHG) emissions scenarios during the near future (2021–2045) periods. The results show that the average annual air temperature rises by approximately 0.5–0.6 °C and 0.9–1.0 °C under the minimum (RCP 2.6) and maximum (RCP 8.5) GHG emission scenarios, respectively. The annual rainfall, obtained from both scenarios, increased by the same range of 20–200 mm/year, on average. The summation of surface water (water yield) and groundwater recharge (water percolation) in the Yom river basin decreased by 443.98 and 316.77 million m3/year under the RCPs 2.6 and 8.5, respectively. While, in the Nan river basin, it is projected to increase by 355 million m3/year under RCP 2.6 but decrease by 20.79 million m3/year under RCP 8.5. These quantitative changes can directly impact water availability when evaluating the water demand for consumption, industry, and agriculture.


2018 ◽  
Vol 11 (1) ◽  
pp. 303-326 ◽  
Author(s):  
N. S. Abeysingha ◽  
Adlul Islam ◽  
Man Singh

Abstract Climate change impact on flow regimes in the Gomti River basin, India was studied using the Soil and Water Assessment Tool (SWAT) driven by climate change scenarios generated from multiple general circulation model (GCM) projections. The SWAT-CUP (SWAT-Calibration and Uncertainty Programs) was used for calibration and validation of SWAT using multi-site data. Climate change scenarios were generated from multiple GCM projections using the hybrid-delta ensemble method. Calibration of SWAT using the nine most sensitive parameters showed that the model performed reasonably well with P-factor >0.7 and R-factor <1.0. The annual rainfall is projected to increase by 3.4–4.5, 4.7–10.0, and 5.0–18.0% during the 2020s, 2050s, and 2080s respectively under different Representative Concentration Pathways (RCPs). There is a decrease in rainfall during the winter season. The annual streamflow is projected to increase by 1–9, 1–22, and 2–38% during the 2020s, 2050s, and 2080s, respectively. However, winter and summer streamflow is projected to decrease. Magnitude and frequency of high flows is also projected to increase in the range of 3.6–27.3 and 12–87%, respectively under different RCPs. The results of this study will be helpful in developing suitable water management adaptation plans for the study basin.


2020 ◽  
Vol 24 (3) ◽  
pp. 305-315
Author(s):  
Ninu Krishna MV ◽  
Prasanna MV ◽  
Vijith H

Impact of climate change over the hydrological system in a region can be identified through statistical characterization of hydrometerological parameters such as rainfall, temperature, humidity and evaporation. In order to understand the influence of climate change, statistical trend characteristics of rainy days, non-rainy days and evaporation rate in the Limbang River Basin (LRB) in Sarawak, Malaysia, Northern Borneo was assessed in the present research. Annual rainfall and monthly evaporation data, over a period of 46 years, (1970 - 2015) corresponding to three rain gauging stations, the Limbang DID, Ukong and Long Napir were used in the research. Linear regression model, Mann Kendall and Sen’s slope estimator techniques were applied to detect the statistical trends in rainy days and evaporation. A statistically significant increasing trend in annual rainy days was found at all the stations. Non-rainy days showed a statistically significant decreasing trend at Limbang DID and Ukong. Monthly evaporation rates showed an overall increasing trend and the greatest increasing trend in evaporation was observed in September (2.55 mm/year) for the Limbang DID and in December (2.61 mm/year) for Ukong. Evaporation measured at the Ukong station also showed a non-significant decrease during June and September. A comparison of the evaporation controlling meteorological variables such as rainfall, temperature and relative humidity indicates inter-influence at various strengths. Along with local precipitation characteristics, wind and fluctuation of atmospheric temperature over the region plays a vital role in increased rate of evaporation from the region. Overall, the analysis identified a statistically significant increasing trend in rainy days and evaporation in the LRB. The results of the present research can be used as critical planning data for micro and macro hydroelectric projects in the river basin.


2010 ◽  
Vol 7 (3) ◽  
pp. 3159-3188 ◽  
Author(s):  
Y. Huang ◽  
W. F. Yang ◽  
L. Chen

Abstract. Doubtlessly, global climate change and its impacts have caught increasing attention from all sectors of the society world-widely. Among all those affected aspects, hydrological circle has been found rather sensitive to climate change. Climate change, either as the result or as the driving-force, has intensified the uneven distribution of water resources in the Changjiang (Yangtze) River basin, China. In turn, drought and flooding problems have been aggravated which has brought new challenges to current hydraulic works such as dike or reservoirs which were designed and constructed based on the historical hydrological characteristics, yet has been significantly changed due to climate change impact. Thus, it is necessary to consider the climate change impacts in basin planning and water resources management, currently and in the future. To serve such purpose, research has been carried out on climate change impact on water resources (and hydrological circle) in Changjiang River. The paper presents the main findings of the research, including main findings from analysis of historical hydro-meteorological data in Changjiang River, and runoff change trends in the future using temperature and precipitation predictions calculated based on different emission scenarios of the 24 Global Climate Modes (GCMs) which has been used in the 4th IPCC assessment report. In this research, two types of macro-scope statistical and hydrological models were developed to simulate runoff prediction. Concerning the change trends obtained from the historical data and the projection from GCMs results, the trend of changes in water resources impacted by climate change was analyzed for Changjiang River. Uncertainty of using the models and data were as well analyzed.


Author(s):  
Edangodage D.P. PERERA ◽  
Akiko HIROE ◽  
Kazuhiko FUKAMI ◽  
Toshiya UENOYAMA ◽  
Shigenobu TANAKA

Sign in / Sign up

Export Citation Format

Share Document