scholarly journals Design and Development Autonomous Unmanned Aerial Vehicle Software

Unmanned aerial vehicles are the cutting edge technology which is used in various arduous applications and emergency scenarios. But human operators find it burdensome and experience a lot of physical and mental stress while operating the aerial systems in critical and emergency scenarios such as rescue operations, mine inspection, and surveillance. Our proposed idea is to provide the autonomous capability and features to these automatons by developing a mission-planning application that can autonomously guide UAV operations even in GPS denied environments by implementing SLAM (Simultaneous Localization and Mapping). With autonomous capability, aerial systems can help to plummet the stress on human operators or may even perform the process or mission efficiently without human intervention in numerous applications. Applications involving autonomous unmanned aerial systems have increased in recent times and are being applied in a wide range of fields such as infrastructure, transport, agriculture, mining, media, and transport. This paper covers the working of the autonomous navigation algorithm, artificially intelligent object detection algorithm and the mission planning API (Application Programming Interface).

Author(s):  
Giulio Avanzini ◽  
David S Martínez

A procedure for evaluating the risk related to the use of unmanned aerial systems over populated areas is proposed. A nominal trajectory, planned for performing a given mission, is represented by means of motion primitives, that is segments and arcs flown in a steady-state condition. The risk of hitting a person on the ground after catastrophic failure is evaluated as a function of vehicle reliability and population density (assumed known), and position of the impact point (which depends on initial conditions at the time of failure and trajectory flown afterwards). In the deterministic case, a lethal area is introduced and the risk at each point on the ground is proportional to the amount of time spent by the point inside the lethal area. Under the assumptions of a ballistic fall, the position of the lethal area with respect to the nominal trajectory depends only on altitude and velocity at the time of failure. When the effect of navigation errors is introduced, impact points are described by a statistical impact footprint, assuming that position and velocity errors at time of failure are normally distributed with known standard deviations. The two approaches are compared for a fictitious, yet realistic, mission scenario.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2481 ◽  
Author(s):  
Ashraful Islam ◽  
Adam L. Houston ◽  
Ajay Shankar ◽  
Carrick Detweiler

Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500 m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions.


2020 ◽  
Vol 12 (22) ◽  
pp. 3831
Author(s):  
Marvin Ludwig ◽  
Christian M. Runge ◽  
Nicolas Friess ◽  
Tiziana L. Koch ◽  
Sebastian Richter ◽  
...  

Unmanned aerial systems (UAS) are cost-effective, flexible and offer a wide range of applications. If equipped with optical sensors, orthophotos with very high spatial resolution can be retrieved using photogrammetric processing. The use of these images in multi-temporal analysis and the combination with spatial data imposes high demands on their spatial accuracy. This georeferencing accuracy of UAS orthomosaics is generally expressed as the checkpoint error. However, the checkpoint error alone gives no information about the reproducibility of the photogrammetrical compilation of orthomosaics. This study optimizes the geolocation of UAS orthomosaics time series and evaluates their reproducibility. A correlation analysis of repeatedly computed orthomosaics with identical parameters revealed a reproducibility of 99% in a grassland and 75% in a forest area. Between time steps, the corresponding positional errors of digitized objects lie between 0.07 m in the grassland and 0.3 m in the forest canopy. The novel methods were integrated into a processing workflow to enhance the traceability and increase the quality of UAS remote sensing.


10.29007/5pch ◽  
2018 ◽  
Author(s):  
Kristin Yvonne Rozier ◽  
Johann Schumann

R2U2 (Realizable, Responsive, Unobtrusive Unit) is an extensible framework for runtime System Health Management (SHM) of cyber-physical systems. R2U2 can be run in hardware (e.g., FPGAs), or software; can monitor hardware, software, or a combination of the two; and can analyze a range of different types of system requirements during runtime. An R2U2 requirement is specified utilizing a hierarchical combination of building blocks: temporal formula runtime observers (in LTL or MTL), Bayesian networks, sensor filters, and Boolean testers. Importantly, the framework is extensible; it is designed to enable definitions of new building blocks in combination with the core structure. Originally deployed on Unmanned Aerial Systems (UAS), R2U2 is designed to run on a wide range of embedded platforms, from autonomous systems like rovers, satellites, and robots, to human-assistive ground systems and cockpits.R2U2 is named after the requirements it satisfies; while the exact requirements vary by platform and mission, the ability to formally reason about Realizability, Responsiveness, and Unobtrusiveness is necessary for flight certifiability, safety-critical system assurance, and achievement of technology readiness levels for target systems. Realizability ensures that R2U2 is sufficiently expressive to encapsulate meaningful runtime requirements while maintaining adaptability to run on different platforms, transition be- tween different mission stages, and update quickly between missions. Responsiveness entails continuously monitoring the system under test, real-time reasoning, reporting intermediate status, and as-early-as-possible requirements evaluations. Unobtrusiveness ensures compliance with the crucial properties of the target architecture: functionality, certifiability, timing, tolerances, cost, or other constraints.


2017 ◽  
Vol 89 (5) ◽  
pp. 703-708 ◽  
Author(s):  
Laura Novaro Mascarello ◽  
Fulvia Quagliotti

Purpose In the past decades, both civil and military applications of small unmanned aerial systems (sUASs) have been on the rise. The sUASs guarantee the performance of dangerous, dull, duly and dirty missions, according to the 4D rule. The purpose of this study is to describe, some ethical, operational and safety challenges occur owing to the use of sUASs at over-crowded areas or in emergency scenarios. After an overview of the current sUAS regulations, some strategic configuration elements will be analysed to improve these systems and to define safe and inoffensive sUASs. Nevertheless, some problems have not been completely overcome. Design/methodology/approach The unmanned vehicles are nowadays applied for different kinds of applications. Search and rescue (S&R) missions; terrain surveillance and monitoring after natural disasters, such as earthquakes and landslides; and transportation of medical equipment and cartography are some examples of the most renowned and important civil missions of sUAS. In all these scenarios, some challenges could be encountered. First, the use of sUASs could compromise the privacy of unaware citizens who are in the area of application. Moreover, even if the unmanned vehicle works according to national and international regulations, there are some hazards both for the ground operators and for the population, because these sUASs could impact the human body after a flight failure. Findings In this paper, current principal regulations will be analysed, identifying some differences and discrepancies among them. Moreover, some considerations about the configuration elements are introduced to define the safe use of sUASs. Nevertheless, the privacy challenge is quite complicated to be overcome definitely. Originality/value Considering some challenges related to the civil applications of sUASs, new unmanned configurations could be developed to guarantee safety and data protection of unaware people.


2018 ◽  
Vol 373 (1746) ◽  
pp. 20170385 ◽  
Author(s):  
Colin J. Torney ◽  
Myles Lamont ◽  
Leon Debell ◽  
Ryan J. Angohiatok ◽  
Lisa-Marie Leclerc ◽  
...  

Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa. This article is part of the theme issue ‘Collective movement ecology’.


Sign in / Sign up

Export Citation Format

Share Document