scholarly journals Video Steganography using IWT, DWT, LBP Methods and its Research

Steganography is a method used for inserting the secret information into an another medium such as text, images, audio signals or video signals, without revealing its existence in the medium. In video steganography, a video file will be used as a cover medium and secret message embedded inside the cover medium. Video are picture perfect for embedding the secret message because of its large embedding capacity. We propose three secure steganography algorithms that embed a bit stream of the secret message into the approximation coefficients of the integer wavelet transform(IWT), DWT and using LBP method to form stego video. The geometric alteration between the cover video and the stego video is measured by using the Mean Square Error (MSE) and the PSNR. The new results show that, the proposed algorithms can hide the secret message with a great payload capacity with a high level of security and a greater invisibility.

2019 ◽  
Vol 29 (1) ◽  
pp. 1216-1225 ◽  
Author(s):  
Zeyad Safaa Younus ◽  
Ghada Thanoon Younus

Abstract This paper aims to propose a method for data hiding in video by utilizing the least significant bit (LSB) method and improving it by utilizing the knight tour algorithm for concealing the data inside the AVI video file and using a key function encryption method for encrypting the secret message. First, the secret message is encrypted by utilizing a mathematical equation. The key used in the equation is a set of random numbers. These numbers differ in each implementation to warrant the safety of the hidden message and to increase the security of the secret message. Then, the cover video was converted from a set of frames into separated images to take the advantage of the large size of video file. Afterward, the knight tour algorithm is utilized for random selecting of the pixels inside the frame utilized for embedding the secret message inside it to overcome the shortcoming of the conventional LSB method that utilized the serial selection of pixel and to increase the robustness and security of the proposed method. Afterward, the encrypted secret message is embedded inside the selected pixels by utilizing the LSB method in bits (7 and 8). The observational results have drawn that the proposed method has a superior performance compared to the previous steganography method in terms of quality by a high PSNR of 67.3638 dB and the lowest MSE of 0.2578. Furthermore, this method preserves the security where the secret message cannot be drawn out without knowing the decoding rules.


Author(s):  
Pinky Saikia Dutta ◽  
Sauvik Chakraborty

Steganography is data hidden within data. Steganography is an encryption technique that can be used along with cryptography as an extra-secure method in which to protect data. Steganography techniques can be applied to images, a video file or an audio file. Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a treatise on cryptography and steganography, disguised as a book on magic. The advantage of steganography over cryptography alone is that the intended secret message does not attract attention to itself as an object of scrutiny. Plainly visible encrypted messages, no matter how unbreakable they are, arouse interest and may in themselves be incriminating in countries in which encryption is illegal. Whereas cryptography is the practice of protecting the contents of a message alone, steganography is concerned both with concealing the fact that a secret message is being sent and its contents. Steganography includes the concealment of information within computer files. In digital steganography, electronic communications may include steganographic coding inside of a transport layer, such as a document file, image file, program or protocol.


2020 ◽  
Vol 9 (3) ◽  
pp. 1015-1023 ◽  
Author(s):  
Muhammad Fuad ◽  
Ferda Ernawan

Steganography is a technique of concealing the message in multimedia data. Multimedia data, such as videos are often compressed to reduce the storage for limited bandwidth. The video provides additional hidden-space in the object motion of image sequences. This research proposes a video steganography scheme based on object motion and DCT-psychovisual for concealing the message. The proposed hiding technique embeds a secret message along the object motion of the video frames. Motion analysis is used to determine the embedding regions. The proposed scheme selects six DCT coefficients in the middle frequency using DCT-psychovisual effects of hiding messages. A message is embedded by modifying middle DCT coefficients using the proposed algorithm. The middle frequencies have a large hiding capacity and it relatively does not give significant effect to the video reconstruction. The performance of the proposed video steganography is evaluated in terms of video quality and robustness against MPEG compression. The experimental results produce minimum distortion of the video quality. Our scheme produces a robust of hiding messages against MPEG-4 compression with average NC value of 0.94. The proposed video steganography achieves less perceptual distortion to human eyes and it's resistant against reducing video storage.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5242
Author(s):  
Mingyuan Cao ◽  
Lihua Tian ◽  
Chen Li

Recently, many video steganography algorithms based on the intra-prediction mode (IPM) have been adaptive steganography algorithms. These algorithms usually focus on the research about mapping rules and distortion functions while ignoring the fact that adaptive steganography may not be suitable for video steganography based on the intra-prediction mode; this is because the adaptive steganography algorithm must first calculate the loss of all cover before the first secret message is embedded. However, the modification of an IPM may change the pixel values of the current block and adjacent blocks, which will lead to the change of the loss of the following blocks. In order to avoid this problem, a new secure video steganography based on a novel embedding strategy is proposed in this paper. Video steganography is combined with video encoding. Firstly, the frame is encoded by an original encoder and all the relevant information is saved. The candidate block is found according to the relevant information and mapping rules. Then every qualified block is analyzed, and a one-bit message is embedded during intra-prediction encoding. At last, if the IPM of this block is changed, the values of the residual are modified in order to keep the optimality of the modified IPM. Experimental results indicate that our algorithm has good security performance and little impact on video quality.


Author(s):  
Wei Yang ◽  
Jialei Chen ◽  
Kamran Paynabar ◽  
Chuck Zhang

Abstract Additive Manufacturing (AM) is an emerging manufacturing technology that plays a growing role in both industrial and consumer settings. However, security concerns of the AM have been raised among researchers. In this paper, we present an online detection mechanism for the malicious attempts on AM system, which taps into both audios and videos collected during the actual printing process. For audio signals, we propose to monitor the characteristics or patterns in the spectrogram via the Wasserstain metric. For video signals, we present a path reconstruction method which effectively monitors the motion of the printer extruder. We then show the effectiveness of our methods in a case study using Ender 3D printer, where the cyber-incidence of modifying the internal fill density can be easily identified in an online manner.


2013 ◽  
Vol 2 (2) ◽  
pp. 134 ◽  
Author(s):  
Agilandeeswari Loganathan ◽  
Brindha Krishnamoorthy ◽  
Stiffy Sunny ◽  
Muralibabu Kumaravel

Communication in digital form has become the part of day todays lifestyle, in certain moment communication is made secret to avoid others from knowing the information. By providing security to the sensitive data it is ensured that the users data is protected from viewing and accessing by others. In the current discussion about data security, Steganographic algorithm using two mediums has been discussed that involves image based encryption and converting to word file. The stage involving image based encryption uses HMAC-MD5 algorithm along with LSB steganography. LSB technique scatters the secret data which have to be protected over the entire image. Convert the embedded image in word file, so that the secret message is made unavailable to others who try to obtain the file. This method provides greater payload capacity along with higher image fidelity and thus make the proposed system is more robust against attacks.


Author(s):  
Ahlem Fatnassi ◽  
Hamza Gharsellaoui ◽  
Sadok Bouamama

Through the advent of digital information, information security has taken on a vital role. Use of the internet freely for contact has increased the attacks on users. Data protection is the present problem relating to privacy and security during storage and communication. This paper deals with a multilayered protected channel's proposal to transfer confidential data/video through a channel. The hidden video is initially encrypted using the algorithm NOLSB. The created cipher video is hidden in a larger sized video file. In addition, this video file is encrypted using the (m, k) firm technique to optimize resource efficiency and bandwidth optimization. Video shares are then sent through all the network's channels to ensure security. This approach ensures that video files could be retrieved at the end receiver even though any shares were lost over the network, without the sender needing to resend the video file.


Author(s):  
Ming Yang ◽  
Monica Trifas ◽  
Guillermo Francia ◽  
Lei Chen ◽  
Yongliang Hu

Information security has traditionally been ensured with data encryption techniques. Different generic data encryption standards, such as DES, RSA, AES, have been developed. These encryption standards provide high level of security to the encrypted data. However, they are not very efficient in the encryption of multimedia contents due to the large volume of digital image/video data. In order to address this issue, different image/video encryption methodologies have been developed. These methodologies encrypt only the key parameters of image/video data instead of encrypting it as a bitstream. Joint compression-encryption is a very promising direction for image/video encryption. Nowadays, researchers start to utilize information hiding techniques to enhance the security level of data encryption methodologies. Information hiding conceals not only the content of the secret message, but also its very existence. In terms of the amount of data to be embedded, information hiding methodologies can be classified into low bitrate and high bitrate algorithms. In terms of the domain for embedding, they can be classified into spatial domain and transform domain algorithms. In this chapter, the authors have reviewed various data encryption standards, image/video encryption algorithms, and joint compression-encryption methodologies. Besides, the authors have also presented different categories of information hiding methodologies as well as data embedding strategies for digital image/video contents.


2016 ◽  
Vol 40 (4) ◽  
pp. 47-61 ◽  
Author(s):  
Andrés Cabrera ◽  
JoAnn Kuchera-Morin ◽  
Curtis Roads

Spatial audio has been at the core of the multimodal experience at the AlloSphere, a unique instrument for data discovery and exploration through interactive immersive display, since its conception. The AlloSphere multichannel spatial audio design has direct roots in the history of electroacoustic spatial audio and is the result of previous activities in spatial audio at the University of California at Santa Barbara. A concise technical description of the AlloSphere, its architectural and acoustic features, its unique 3-D visual projection system, and the current 54.1 Meyer Sound audio infrastructure is presented, with details of the audio software architecture and the immersive sound capabilities it supports. As part of the process of realizing scientific and artistic projects for the AlloSphere, spatial audio research has been conducted, including the use of decorrelation of audio signals to supplement spatialization and tackling the thorny problem of interactive up-mixing through the Sound Element Spatializer and the Zirkonium Chords project. The latter uses the metaphor of geometric spatial chords as a high-level means of spatial up-mixing in performance. Other developments relating to spatial audio are presented, such as Ryan McGee's Spatial Modulation Synthesis, which simultaneously explores the synthesis of space and timbre.


2021 ◽  
Vol 13 (2) ◽  
pp. 16-34
Author(s):  
Hanlin Liu ◽  
Jingju Liu ◽  
Xuehu Yan ◽  
Pengfei Xue ◽  
Dingwei Tan

This paper proposes an audio steganography method based on run length encoding and integer wavelet transform which can be used to hide secret message in digital audio. The major contribution of the proposed scheme is to propose an audio steganography with high capacity, where the secret information is compressed by run length encoding. In the applicable scenario, the main purpose is to hide as more information as possible in the cover audio files. First, the secret information is chaotic scrambling, then the result of scrambling is run length encoded, and finally, the secret information is embedded into integer wavelet coefficients. The experimental results and comparison with existing technique show that by utilizing the lossless compression of run length encoding and anti-attack of wavelet domain, the proposed method has improved the capacity, good audio quality, and can achieve blind extraction while maintaining imperceptibility and strong robustness.


Sign in / Sign up

Export Citation Format

Share Document