scholarly journals Mitigation of Selective Forwarding attacks in Wireless Sensor Network

Security issue in Wireless Sensor Networks (WSNs) is a major problem while dealing with WSNs. Therefore, WSNs are susceptible to various kinds of safety assaults. The restricted capability of sensor nodes is one reason for attacks in sensor networks. In WSNs, on the network layer, there are different kinds of safety attack detection methods. There are also many severe limitations in sensor nodes such as energy efficiency, reliability, scalability that affect WSN safety. As sensor nodes have restricted ability for the majority of the limitations, a selective forwarding attack in the networks is hard to identify. In selective forwarding attack, malicious nodes function as a ordinary nodes. However, it tries to find and crash messages prior to forwarding the packet to further nodes. For keeping this sort of attack aside from networks, we suggest a multi-layer strategy, Selective Forwarding Detection (SFD) that maintains the safe transmission of information among sensor nodes at the same time as detecting the selective forwarding attack. In addition, energy efficiency, reliability and scalability are part of the approach.

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2021 ◽  
Author(s):  
Jenice Prabu A ◽  
Hevin Rajesh D

Abstract In Wireless sensor network, the major issues are security and energy consumption. There may be several numbers of malicious nodes present in sensor networks. Several techniques have been proposed by the researchers to identify these malicious nodes. WSNs contain many sensor nodes that sense their environment and also transmit their data via multi-hop communication schemes to the base station. These sensor nodes provides power supply using battery and the energy consumption of these batteries must be low. Securing the data is to avoid attacks on these nodes and data communication. The aggregation of data helps to minimize the amount of messages transmitted within the network and thus reduces overall network energy consumption. Moreover, the base station may distinguish the encrypted and aggregated data based on the encryption keys during the decryption of the aggregated data. In this paper, two aspects of the problem is concerned, we investigate the efficiency of data aggregation: first, how to develop cluster-based routing algorithms to achieve the lowest energy consumption for aggregating data, and second, security issues in wsn. By using Network simulator2 (NS2) this scheme is simulated. In the proposed scheme, energy consumption, packet delivery ratio and throughput is analyzed. The proposed clustering, routing, and protection protocol based on the MCSDA algorithm shows significant improvement over the state-of - the-art protocol.


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


Author(s):  
Mumtaz Qabulio ◽  
Yasir Arfat Malkani ◽  
Muhammad S. Memon ◽  
Ayaz Keerio

Wireless sensor networks (WSNs) are comprised of large collections of small devices having low operating power, low memory space, and limited processing capabilities referred to as sensor nodes. The nodes in WSNs are capable of sensing, recording, and monitoring environmental conditions. Nowadays, a variety of WSNs applications can be found in many areas such as in healthcare, agriculture, industries, military, homes, offices, hospitals, smart transportation, and smart buildings. Though WSNs offer many useful applications, they suffer from many deployment issues. The security issue is one of them. The security of WSNs is considerable because of the use of unguided medium and their deployment in harsh, physically unprotected, and unattended environments. This chapter aims to discuss various security objectives and security attacks on WSNs and summarizes the discussed attacks according to their categories. The chapter also discusses different security protocols presented to prevent, detect, and recover the WSNs from various security attacks.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2126 ◽  
Author(s):  
Lijun Wang ◽  
Jia Yan ◽  
Tao Han ◽  
Dexiang Deng

Based on the connectivity and energy consumption problems in wireless sensor networks, this paper proposes a kind of new network algorithm called the connectivity and energy efficiency (CEE) algorithm to guarantee the connectivity and connectivity probability, and also to reduce the network energy consumption as much as possible. Under the premise that all sensors can communicate with each other in a specific communication radius, we obtained the relationship among the connectivity, the number of sensor nodes, and the communication radius because of the theory of probability and statistics. The innovation of the paper is to maximize the network connectivity and connectivity probability, by choosing which types of sleeping nodes to wake up. According to the node’s residual energy and the relative value of distance, the algorithm reduces the energy consumption of the whole network as much as possible, and wakes up the number of neighbor nodes as little as possible, to improve the service life of the whole network. Simulation results show that this algorithm combines the connectivity and the energy efficiency, provides a useful reference value for the normal operation of the sensors networks.


Author(s):  
Turki Ali Alghamdi

Abstract Wireless sensor networks (WSNs) comprise tiny devices known as sensors. These devices are frequently employed in short-range communications and can perform various operations such as monitoring, collecting, analyzing, and processing data. WSNs do not require any infrastructure, are reliable, and can withstand adverse conditions. Sensor networks are autonomous structures in which the sensor nodes can enter or leave the network at any time instant. If the entering node is attacker node it will monitor the network operation and can cause security issues in the network that can affect communication. Existing literature presents security improvements in such networks in the form of cryptography, asymmetric techniques, key distribution, and various protocols. However, these techniques may not be effective in the case of autonomous structures and can increase computational complexity. In this paper, a convolutional technique (CT) is proposed that generates security bits using convolutional codes to prevent malicious node attacks on WSNs. Different security codes are generated at different hops and the simulation results demonstrate that the proposed technique enhances network security and reduces computational complexity compared to existing approaches.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


Sign in / Sign up

Export Citation Format

Share Document