scholarly journals Energy Planning and Sustainable Biogas Production Prospect with in Residential Quarters in Developing Countries

The prospects of biogas as a major energy option to alleviate the energy needs in Africa is huge based on its teeming population. However, the main source of biogas i.e. human excretal is being neglected, thereby loosing resource worth 500 MW of electricity. This research is geared towards estimating the accruable biogas that can be harnessed in a typical student hostel in a developing country. The data was collected at the main chamber of the hostel. The estimation of the optimized state of methane, hydrogen sulphide and carbon dioxide is given as 12%, 0.94% and 4.42% respectively. It was also affirmed that the algae growth on the walls of the sewage line is responsible for the low carbon dioxide values. Also, it was reported that the production of hydrogen sulphide gas is predictable, as it is not directly related to the concentration of microorganism in the sewage chamber. This research gives an eye-opener on biogas wastage in developing countries

2019 ◽  
Vol 8 (1) ◽  
pp. 37-41
Author(s):  
Bambang Trisakti ◽  
Irvan ◽  
M.Taufan Anantama ◽  
Arbie Saldi Zusri ◽  
Alfian Haikel Lubis ◽  
...  

Anaerobic digestion is one of solution to environmental problems and energy sources for current energy needs. In anaerobic digestion, organic material is degraded by bacteria, which is carried out without oxygen, and converts it to a mixture of methane and carbon dioxide. POME can be degraded anaerobically in anaerobic digester to produce biogas. This study aims to increase the conversion of biogas produced using a 2 liter Continuous Stirred Tank Reactor (CSTR) type digester in the methanogenesis process by recycling the effluent produced through the ultrafiltration membrane in a transition condition (45oC). The process is carried out by varying the recycle ratio, which is 0%, 15% and 25% on HRT 6 days with a condition of pH 7 ± 0.2. The highest average biogas production was achieved at the 25% recycle ratio of 33.15 x 10-5 L / mg VS. day, with the composition of methane, carbon dioxide and hydrogen sulfide each of 79%; 19%; and 0.006%, with degradation of VS and COD of 39.58% and 66.33% respectively. For the composition of the highest CH4 content obtained at a variation of the 15% recycle ratio which is equal to 85% while for the composition of carbon dioxide, and hydrogen sulfide each is 14%; and 0.0076%.


2017 ◽  
Vol 28 (5-6) ◽  
pp. 639-647
Author(s):  
Andjela Lazarević

Unlike developing countries, advanced economies combine top-down and bottom-up approach for strategic planning and consider energy policy in the wider scope of spatial planning. In order to better align planning policies in different sectors, the authorities have transferred decision making from the central government to the local communities. This paper provides a brief overview of the London’s strategic spatial and energy policies, examining how they fit within more general visions and objectives. Past and future approaches to the spatial and energy planning were also analysed, with respect to the legal documents that supported actions of different government levels. This paper presents decentralised energy planning and supply in London, highlighting the significance of experience and lessons learned in the development of decentralised energy options for developing countries, willing to engage their resources to contribute to a low carbon economy in accordance with their financial and other possibilities.


2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


Author(s):  
Kathleen Araújo

The world is at a pivotal crossroad in energy choices. There is a strong sense that our use of energy must be more sustainable. Moreover, many also broadly agree that a way must be found to rely increasingly on lower carbon energy sources. However, no single or clear solution exists on the means to carry out such a shift at either a national or international level. Traditional energy planning (when done) has revolved around limited cost projections that often fail to take longer term evidence and interactions of a wider set of factors into account. The good news is that evidence does exist on such change in case studies of different nations shifting toward low-carbon energy approaches. In fact, such shifts can occur quite quickly at times, alongside industrial and societal advance, innovation, and policy learning. These types of insights will be important for informing energy debates and decision-making going forward. Low Carbon Energy Transitions: Turning Points in National Policy and Innovation takes an in-depth look at four energy transitions that have occurred since the global oil crisis of 1973: Brazilian biofuels, Danish wind power, French nuclear power, and Icelandic geothermal energy. With these cases, Dr. Araújo argues that significant nationwide shifts to low-carbon energy can occur in under fifteen years, and that technological complexity is not necessarily a major impediment to such shifts. Dr. Araújo draws on more than five years of research, and interviews with over 120 different scientists, government workers, academics, and members of civil society in completing this study. Low Carbon Energy Transitions is written for for professionals in energy, the environment and policy as well as for students and citizens who are interested in critical decisions about energy sustainability. Technology briefings are provided for each of the major technologies in this book, so that scientific and non-scientific readers can engage in more even discussions about the choices that are involved.


2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2021 ◽  
Vol 13 (12) ◽  
pp. 6517
Author(s):  
Innocent Chirisa ◽  
Trynos Gumbo ◽  
Veronica N. Gundu-Jakarasi ◽  
Washington Zhakata ◽  
Thomas Karakadzai ◽  
...  

Reducing vulnerability to climate change and enhancing the long-term coping capacities of rural or urban settlements to negative climate change impacts have become urgent issues in developing countries. Developing countries do not have the means to cope with climate hazards and their economies are highly dependent on climate-sensitive sectors such as agriculture, water, and coastal zones. Like most countries in Southern Africa, Zimbabwe suffers from climate-induced disasters. Therefore, this study maps critical aspects required for setting up a strong financial foundation for sustainable climate adaptation in Zimbabwe. It discusses the frameworks required for sustainable climate adaptation finance and suggests the direction for success in leveraging global climate financing towards building a low-carbon and climate-resilient Zimbabwe. The study involved a document review and analysis and stakeholder consultation methodological approach. The findings revealed that Zimbabwe has been significantly dependent on global finance mechanisms to mitigate the effects of climate change as its domestic finance mechanisms have not been fully explored. Results revealed the importance of partnership models between the state, individuals, civil society organisations, and agencies. Local financing institutions such as the Infrastructure Development Bank of Zimbabwe (IDBZ) have been set up. This operates a Climate Finance Facility (GFF), providing a domestic financial resource base. A climate change bill is also under formulation through government efforts. However, numerous barriers limit the adoption of adaptation practices, services, and technologies at the scale required. The absence of finance increases the vulnerability of local settlements (rural or urban) to extreme weather events leading to loss of life and property and compromised adaptive capacity. Therefore, the study recommends an adaptation financing framework aligned to different sectoral policies that can leverage diverse opportunities such as blended climate financing. The framework must foster synergies for improved impact and implementation of climate change adaptation initiatives for the country.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3683
Author(s):  
Yerasimos Yerasimou ◽  
Marios Kynigos ◽  
Venizelos Efthymiou ◽  
George E. Georghiou

Distributed generation (DG) systems are growing in number, diversifying in driving technologies and providing substantial energy quantities in covering the energy needs of the interconnected system in an optimal way. This evolution of technologies is a response to the needs of the energy transition to a low carbon economy. A nanogrid is dependent on local resources through appropriate DG, confined within the boundaries of an energy domain not exceeding 100 kW of power. It can be a single building that is equipped with a local electricity generation to fulfil the building’s load consumption requirements, it is electrically interconnected with the external power system and it can optionally be equipped with a storage system. It is, however, mandatory that a nanogrid is equipped with a controller for optimisation of the production/consumption curves. This study presents design consideretions for nanogrids and the design of a nanogrid system consisting of a 40 kWp photovoltaic (PV) system and a 50 kWh battery energy storage system (BESS) managed via a central converter able to perform demand-side management (DSM). The implementation of the nanogrid aims at reducing the CO2 footprint of the confined domain and increase its self-sufficiency.


Author(s):  
Yihuang Xiong ◽  
Quinn Campbell ◽  
Julian Fanghanel ◽  
Cathy Badding ◽  
Huaiyu Wang ◽  
...  

The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed...


Sign in / Sign up

Export Citation Format

Share Document