scholarly journals Experimental Investigation of Diesel Engine with Novel Juliflora Biodiesel

Biodiesels which have been derived from non-edible vegetable oils are bagging the interest of researchers. These have been recognized as the potential alternatives of regular petroleum fuels. In this work, oil extracted from Juliflora seeds is converted as biodiesel by the transesterification process and used as alternative fuel in diesel engines. The tests are conducted by using diesel, B10, B20, B30 and B40. The experimental results of this study have disclosed that the Juliflora biodiesel blends have shown similar characteristics as diesel fuel. The BTE, CO, HC and smoke emissions are low for biodiesel blends while BSFC and NOx emissions are slightly higher. Taking all results into account it can be clinched that B10 blend of Juliflora biodiesel has viable option for diesel engine applications.

2011 ◽  
Vol 347-353 ◽  
pp. 3915-3919 ◽  
Author(s):  
Jun Liu ◽  
Zhen Bin Chen ◽  
Ming Wei Xiao ◽  
Sheng Jun Jiang

To meet demands for improvements in the CO,NOx and smoke intensity and fuel economy from diesel engine,the emulsified diesel fuel are choose as alternative fuel .It is prepared through selecting appropriate compound-surfactants on the basis of the HLB (hydrophilic and lipop- hilic balance) value.Comparative experiments between the emulsified fuels and diesel are undertook based on engine bench test in the model 295A diesel engine without any modification. The results indicate that smoke intensity and NOx emissions are reduced greatly when using the emulsified fuels ,especially for those with glucose Solution.Besides,The fuel consumption of the emulsified fuels s are less than that of pure diesel and the economy characteristic from diesel engine is better.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2201 ◽  
Author(s):  
Kibong Choi ◽  
Suhan Park ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The purpose of this paper is to investigate the effects of using gas to liquid (GTL)-biodiesel blends as an alternative fuel on the physical properties as well as the combustion and emission reduction characteristics in a diesel engine. In order to assess the influence of the GTL-biodiesel blending ratio, the biodiesel is blended with GTL fuel, which is a test fuel with various blending ratios. The effects of GTL-biodiesel blends on the fuel properties, heat release, and emission characteristics were studied at various fuel injection timing and blending ratios. The test fuels investigated here were GTL, biodiesel, and biodiesel blended GTL fuels. The biodiesel blending ratio was changed from 0%, 20% and 40% by a volume fraction. The GTL-biodiesel fuel properties such as the fuel density, viscosity, lower heating value, and cetane number were analyzed in order to compare the effects of different mixing ratios of the biodiesel fuel. Based on the experimental results, certain meaningful results were derived. The increasing rate of the density and kinematic viscosity of the GTL-biodiesel blended fuels at various temperature conditions was increased with the increase in the biodiesel volumetric fraction. The rate of density changes between biodiesel-GTL and GTL are 2.768% to 10.982%. The combustion pressure of the GTL fuel showed a higher pressure than the biodiesel blended GTL fuels. The biodiesel-GTL fuel resulted in reduced NOx and soot emissions compared to those of the unblended GTL fuel. Based on the experimental results, the ignition delay of the GTL-biodiesel blends increased with the increase of the biodiesel blending ratio because of the low cetane number of biodiesel compared to GTL. As the injection timing is advanced, the NOx emissions were significantly increased, while the effect of the injection timing on the soot emission was small compared to the NOx emissions. In the cases of the HC and CO emissions, the GTL-biodiesel blended fuels resulted in similar low emission trends and, in particular, the HC emissions showed a slight increase at the range of advanced injection timings.


2016 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Biplab Das ◽  
Pradip Lingfa

The paper highlights the results of an experimental investigation carried out on Karanja oil as a supplementary for diesel fuel in Compression Ignition engine. In the present study, triglycerides of Karanja oil is converted into mono-ester (biodiesel) using based catalyst transesterfication process. Karanja biodiesel is blended with petroleum diesel in the volumetric proportions of 2−10%. Results reveal that the performance characteristics of Karanja biodiesel blends are well comparable with diesel fuel. The emission characteristics such as CO, HC and smoke are found to be lower for Karanja biodiesel blends at all the engine load conditions compared to diesel fuel. Hence, it is concluded that Karanja oil at lower blends can be used in diesel engine without any substantial engine modification.


Author(s):  
Van Ha Pham ◽  
◽  
Ha Hiep Nguyen ◽  

The tests were carried out on the marine diesel engine operating by the load characteristic in seven modes, including five modes according to the test cycle D2 regulated by ISO 8178. Based on the experimental results obtained, the specific weighted NOx emissions and their average values were calculated and compared with IMO regulations. In addition, the study carried out a comparative experimental investigation on diesel fuel and dimethyl ether, and different injector opening pressures in the marine diesel engine to reduce its toxic exhaust emissions.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1176-1180
Author(s):  
Yang Xie ◽  
Yu Jie Hang ◽  
Hong Tao Wang ◽  
Hai Qing Shen ◽  
Cang Su Xu

Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. The objective of this study is to investigate regulated and unregulated exhaust emissions with petroleum diesel fuel and Jatrophabased biodiesel blends at proportions of 20%, 40%, 60%, 80% and 100% (v/v). This study examines three regulated emissions: CO, NMHC and NOx, and two typical unregulated emissions: SO2 and formaldehyde. The CO and formaldehyde emissions increase at low engine loads, and decrease at high engine loads. The NMHC and NOx emissions of the five fuels continuously decrease as biodiesel blends increase. Besides, SME fuels can also reduce the SO2 emissions.


Author(s):  
INGLE S ◽  
NANDEDKAR V. M.

Rising petroleum prices, increasing threat to the environment from exhaust emissions and global warming have generated intense international interest in developing alternative non-petroleum fuels for engines. The present work aims to find out the prospects and opportunities of using methyl esters of castor as fuels in an automobile. The suitability of such fuels in transportation vehicles helps in saving foreign exchange and use can be made of locally available resources. Tests were conducted on a four stroke, four cylinder, D.I. diesel engine with Diesel and Biodiesel. The results of the emission tests on smoke meter are compared for 100% castor biodiesel (BC100) with that of neat diesel. No modifications were done on the engine. The results indicate that there is a reduction of 30%-35% in smoke density while using Biodiesel. It can be thus be concluded that methyl esters of castor oil can be used as a substitute for diesel fuel in automobiles.


2016 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Biplab Das ◽  
Pradip Lingfa

The paper highlights the results of an experimental investigation carried out on Karanja oil as a supplementary for diesel fuel in Compression Ignition engine. In the present study, triglycerides of Karanja oil is converted into mono-ester (biodiesel) using based catalyst transesterfication process. Karanja biodiesel is blended with petroleum diesel in the volumetric proportions of 2−10%. Results reveal that the performance characteristics of Karanja biodiesel blends are well comparable with diesel fuel. The emission characteristics such as CO, HC and smoke are found to be lower for Karanja biodiesel blends at all the engine load conditions compared to diesel fuel. Hence, it is concluded that Karanja oil at lower blends can be used in diesel engine without any substantial engine modification.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document