scholarly journals A Hybrid Set of Handwriting Features for Handwritten Recognition

Handwriting of each person is unique since each person has their own unique and different style of handwriting. Handwriting verification can be performed in two ways, dynamic and static. The dynamic verification process is the writer dependent whereas the static verification process is the writer independent procedure. The features can be spatial, structural, statistical, geometrical, graphological, and from other feature extraction techniques. In this work, we are considering the combination of multilevel feature set for writer recognition and identification purpose. A dataset of different handwriting samples collected from 100 different writers is used for this experiment. A decision tree classifier with random forest implementation is used for recognition and identification of writer with 98.2% accuracy.

Author(s):  
Nitika Kapoor ◽  
Parminder Singh

Data mining is the approach which can extract useful information from the data. The prediction analysis is the approach which can predict future possibilities based on the current information. The authors propose a hybrid classifier to carry out the heart disease prediction. The hybrid classifier is combination of random forest and decision tree classifier. Moreover, the heart disease prediction technique has three steps, which are data pre-processing, feature extraction, and classification. In this research, random forest classifier is applied for the feature extraction and decision tree classifier is applied for the generation of prediction results. However, random forest classifier will extract the information and decision tree will generate final classifier result. The authors show the results of proposed model using the Python platform. Moreover, the results are compared with support vector machine (SVM) and k-nearest neighbour classifier (KNN).


The data mining is the approach which can extract useful information from the data. The following research work that has been described is related to the heart disease prediction. The prediction analysis is the approach which can predict future possibilities based on the current information. For the heart disease prediction the classifier that is designed in this research work is hybrid classifier. The hybrid classifier is combination of random forest and decision tree classifier. Moreover, the heart disease prediction technique has three steps which are data pre-processing, feature extraction and classification. In this paper, random forest classifier is applied for the feature extraction and decision tree classifier is applied for the generation of prediction results. However, random forest classifier will extract the information and decision tree will generate final classifier result. We have proposed a hybrid model that has been implemented in python. Moreover, the results are compared with Support Vector Machine (SVM) and K-Nearest Neighbor classifier (KNN).


2021 ◽  
Author(s):  
Anwar Yahya Ebrahim ◽  
Hoshang Kolivand

The authentication of writers, handwritten autograph is widely realized throughout the world, the thorough check of the autograph is important before going to the outcome about the signer. The Arabic autograph has unique characteristics; it includes lines, and overlapping. It will be more difficult to realize higher achievement accuracy. This project attention the above difficulty by achieved selected best characteristics of Arabic autograph authentication, characterized by the number of attributes representing for each autograph. Where the objective is to differentiate if an obtain autograph is genuine, or a forgery. The planned method is based on Discrete Cosine Transform (DCT) to extract feature, then Spars Principal Component Analysis (SPCA) to selection significant attributes for Arabic autograph handwritten recognition to aid the authentication step. Finally, decision tree classifier was achieved for signature authentication. The suggested method DCT with SPCA achieves good outcomes for Arabic autograph dataset when we have verified on various techniques.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Majid Nour ◽  
Kemal Polat

Hypertension (high blood pressure) is an important disease seen among the public, and early detection of hypertension is significant for early treatment. Hypertension is depicted as systolic blood pressure higher than 140 mmHg or diastolic blood pressure higher than 90 mmHg. In this paper, in order to detect the hypertension types based on the personal information and features, four machine learning (ML) methods including C4.5 decision tree classifier (DTC), random forest, linear discriminant analysis (LDA), and linear support vector machine (LSVM) have been used and then compared with each other. In the literature, we have first carried out the classification of hypertension types using classification algorithms based on personal data. To further explain the variability of the classifier type, four different classifier algorithms were selected for solving this problem. In the hypertension dataset, there are eight features including sex, age, height (cm), weight (kg), systolic blood pressure (mmHg), diastolic blood pressure (mmHg), heart rate (bpm), and BMI (kg/m2) to explain the hypertension status and then there are four classes comprising the normal (healthy), prehypertension, stage-1 hypertension, and stage-2 hypertension. In the classification of the hypertension dataset, the obtained classification accuracies are 99.5%, 99.5%, 96.3%, and 92.7% using the C4.5 decision tree classifier, random forest, LDA, and LSVM. The obtained results have shown that ML methods could be confidently used in the automatic determination of the hypertension types.


Modelling the sentiment with context is one of the most important part in Sentiment analysis. There are various classifiers which helps in detecting and classifying it. Detection of sentiment with consideration of sarcasm would make it more accurate. But detection of sarcasm in people review is a challenging task and it may lead to wrong decision making or classification if not detected. This paper uses Decision Tree and Random forest classifiers and compares the performance of both. Here we consider the random forest as hybrid decision tree classifier. We propose that performance of random forest classifier is better than any other normal decision tree classifier with appropriate reasoning


2019 ◽  
Vol 8 (4) ◽  
pp. 1477-1483

With the fast moving technological advancement, the internet usage has been increased rapidly in all the fields. The money transactions for all the applications like online shopping, banking transactions, bill settlement in any industries, online ticket booking for travel and hotels, Fees payment for educational organization, Payment for treatment to hospitals, Payment for super market and variety of applications are using online credit card transactions. This leads to the fraud usage of other accounts and transaction that result in the loss of service and profit to the institution. With this background, this paper focuses on predicting the fraudulent credit card transaction. The Credit Card Transaction dataset from KAGGLE machine learning Repository is used for prediction analysis. The analysis of fraudulent credit card transaction is achieved in four ways. Firstly, the relationship between the variables of the dataset is identified and represented by the graphical notations. Secondly, the feature importance of the dataset is identified using Random Forest, Ada boost, Logistic Regression, Decision Tree, Extra Tree, Gradient Boosting and Naive Bayes classifiers. Thirdly, the extracted feature importance if the credit card transaction dataset is fitted to Random Forest classifier, Ada boost classifier, Logistic Regression classifier, Decision Tree classifier, Extra Tree classifier, Gradient Boosting classifier and Naive Bayes classifier. Fourth, the Performance Analysis is done by analyzing the performance metrics like Accuracy, FScore, AUC Score, Precision and Recall. The implementation is done by python in Anaconda Spyder Navigator Integrated Development Environment. Experimental Results shows that the Decision Tree classifier have achieved the effective prediction with the precision of 1.0, recall of 1.0, FScore of 1.0 , AUC Score of 89.09 and Accuracy of 99.92%.


2021 ◽  
Vol 11 (19) ◽  
pp. 9057
Author(s):  
Xavier Alphonse Inbaraj ◽  
Charlyn Villavicencio ◽  
Julio Jerison Macrohon ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

Tuberculosis is a potential fatal disease with high morbidity and mortality rates. Tuberculosis death rates are rising, posing a serious health threat in several poor countries around the world. To address this issue, we proposed a novel method for detecting tuberculosis in chest X-ray (CXR) images that uses a three-phased approach to distinguish tuberculosis such as segmentation, feature extraction, and classification. In a CXR, we utilized the Weiner filter to distinguish and reduce the impulse noise. The features were extracted from CXR images and trained using a decision tree classifier known as the stacked loopy decision tree (SLDT) classifier. For the classification process, the ROI-based morphological approach was applied in the mentioned three-phased approach, and the feature extraction was accomplished through chromatic and Prewitt-edge highlights.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ruimei Han ◽  
Pei Liu ◽  
Guangyan Wang ◽  
Hanwei Zhang ◽  
Xilong Wu

Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and environment protection. Very high-resolution (VHR) remote sensing images have made it possible to detect and distinguish detailed information on the ground. While abundant texture information and limited spectral channels of VHR images will lead to the increase of intraclass variance and the decrease of the interclass variance. Substantial studies on pixel-based classification algorithms revealed that there were some limitations on land cover information extraction with VHR remote sensing imagery when applying the conventional pixel-based classifiers. Aiming at evaluating the advantages of classifier ensemble strategies and object-based image analysis (OBIA) method for VHR satellite data classification under complex urban area, we present an approach-integrated multiscale segmentation OBIA and a mature classifier ensemble method named random forest. The framework was tested on Chinese GaoFen-1 (GF-1), and GF-2 VHR remotely sensed data over the central business district (CBD) of Zhengzhou metropolitan. Process flow of the proposed framework including data fusion, multiscale image segmentation, best optimal segmentation scale evaluation, multivariance texture feature extraction, random forest ensemble learning classifier construction, accuracy assessment, and time consumption. Advantages of the proposed framework were compared and discussed with several mature state-of-art machine learning algorithms such as the k -nearest neighbor (KNN), support vector machine (SVM), and decision tree classifier (DTC). Experimental results showed that the OA of the proposed method is up to 99.29% and 98.98% for the GF-1 dataset and GF-2 dataset, respectively. And the OA is increased by 26.89%, 11.79%, 11.89%, and 4.26% compared with the traditional machine learning algorithms such as the decision tree classifier (DTC), support vector machine (SVM), k -nearest neighbor (KNN), and random forest (RF) on the test of the GF-1 dataset; OA increased by 32.31%, 13.48%, 9.77%, and 7.72% for the GF-2 dataset. In terms of time consuming, by rough statistic, OBIA-RF spends 223.55 s, SVM spends 403.57 s, KNN spends 86.93 s, and DT spends 0.61 s on average of the GF-1 and GF-2 datasets. Taking the account classification accuracy and running time, the proposed method has good ability of generalization and robustness for complex urban surface classification with high-resolution remotely sensed data.


Author(s):  
Sheikh Shehzad Ahmed

The Internet is used practically everywhere in today's digital environment. With the increased use of the Internet comes an increase in the number of threats. DDoS attacks are one of the most popular types of cyber-attacks nowadays. With the fast advancement of technology, the harm caused by DDoS attacks has grown increasingly severe. Because DDoS attacks may readily modify the ports/protocols utilized or how they function, the basic features of these attacks must be examined. Machine learning approaches have also been used extensively in intrusion detection research. Still, it is unclear what features are applicable and which approach would be better suited for detection. With this in mind, the research presents a machine learning-based DDoS attack detection approach. To train the attack detection model, we employ four Machine Learning algorithms: Decision Tree classifier (ID3), k-Nearest Neighbors (k-NN), Logistic Regression, and Random Forest classifier. The results of our experiments show that the Random Forest classifier is more accurate in recognizing attacks.


Sign in / Sign up

Export Citation Format

Share Document