scholarly journals Improved Pilot Selection for Channel Estimation of Polar Codes in Wireless 5G

Fading channels learning about polar codes is great prominence. Knowledge of polar codes is very important while they are applied to the wireless communication systems. In fading Channels the communication through channel estimation which is an essential step for communication. The structure is constructed by a set of information bits for both systematic polar code and non-systematic polar code and the information set recognized frozen bits. In fading channels uneven pilot selection scheme and even pilot selection scheme are two pilot selection schemes are considered for polar codes. There is an improvement in decoding performance of polar codes using these selection schemes. In this choosing of coded symbols treated as pilots is a replacement of insertion of pilots. Polar codes have poor performance in fixed domain. So the EPS selection scheme can be active for tracing or channel estimation. The structure of polar code encoding is acapable structure and pilot selection is grave since whole selections cannot use the existing structure again. By conjoining the above advantages, pilot signals are selected without any addition from outside and insertion of pilot symbols impartial to estimation of the channel. Leveraging this, the DM-BS scheme is applyto multiple input multiple output (MIMO) system in frequency selective fading channel.

2021 ◽  
Author(s):  
Jamal Amadid ◽  
Mohamed boulouird ◽  
Abdelfettah Belhabib ◽  
Abdelouhab Zeroual

Abstract Channel estimation (CE) is a crucial phase in wireless communication systems, especially in cell-free (CF) massive multiple input multiple output (M-MIMO) since it is a dynamic wireless network. Therefore, this work is introduced to study CE for CF M-MIMO system in the uplink phase, wherein the performance of different estimators are evaluated, discussed, and compared in various situations. We assume the scenario in which each access point has prior knowledge of the channel statistics. The phase-aware-minimum mean square error (PA-MMSE) estimator, the non-phaseaware-MMSE (NPA-MMSE) estimator, and the least-squares estimator are the three estimators which are exploited in this work. Besides, we consider the Rician fading channel in which the line-of-sight path is realized with a phase-shift that models the users’ mobility where the considered phase-shift follows a uniform distribution. On the other hand, the mean-squared error metric is employed in order to evaluate the performance of each estimator, where an analytical and simulated result is provided for the PA-MMSE estimator and the NPA-MMSE estimator in order to assert our numerical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zedong Xie ◽  
Xihong Chen ◽  
Xiaopeng Liu ◽  
Yu Zhao

The impact of intersymbol interference (ISI) on single-carrier frequency-domain equalization with multiple input multiple output (MIMO-SC-FDE) troposcatter communication systems is severe. Most of the channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the noise-predictive (NP) MMSE-based and the residual intersymbol interference cancellation (RISIC) equalization in the single input single output (SISO) system, we focus on the combination of both equalization schemes mentioned above. After extending both of them into MIMO system for the first time, we introduce a novel MMSE-NP-RISIC equalization method for MIMO-SC-FDE troposcatter communication systems. Analysis and simulation results validate the performance of the proposed method in time-varying frequency-selective troposcatter channel at an acceptable computational complexity cost.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Han Wang ◽  
Wencai Du ◽  
Xianpeng Wang ◽  
Guicai Yu ◽  
Lingwei Xu

A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 971
Author(s):  
A. Taufiq Asyhari ◽  
Tobias Koch ◽  
Albert Guillén i Fàbregas

We study the information rates of noncoherent, stationary, Gaussian, and multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbor decoding and pilot-aided channel estimation. In particular, we investigate the behavior of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity by analyzing the capacity pre-log, which is defined as the limiting ratio of the capacity to the logarithm of the SNR as the SNR tends to infinity. We demonstrate that a scheme estimating the channel using pilot symbols and detecting the message using nearest neighbor decoding (while assuming that the channel estimation is perfect) essentially achieves the capacity pre-log of noncoherent multiple-input single-output flat-fading channels, and it essentially achieves the best so far known lower bound on the capacity pre-log of noncoherent MIMO flat-fading channels. Extending the analysis to fading multiple-access channels reveals interesting relationships between the number of antennas and Doppler bandwidth in the comparative performance of joint transmission and time division multiple-access.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Su ◽  
KyungHi Chang

Massive multiple input, multiple output (M-MIMO) technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF), we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO) system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE) approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A) specification, the simulation results finally confirm the validity of our proposals.


2012 ◽  
Vol 239-240 ◽  
pp. 1084-1088
Author(s):  
Jin Lun Chen

Accurate channel estimation plays a key role in multiple-input and multiple-output (MIMO) communication systems. In this paper, we firstly discuss the popular linear least squares (LS) channel estimation and the multiple LS (MLS) channel estimation. Then an adaptive multiple LS (AMLS) channel estimate approach is proposed. Using numerical simulation, it is found that the proposed estimation method outperforms LS and MLS for a wide range of training SNRs.


2012 ◽  
Vol 459 ◽  
pp. 620-623
Author(s):  
Hong He ◽  
Tao Li ◽  
Tong Yang ◽  
Lin He

This article mainly describes a new technique of multiple-input multiple-output (MIMO) communication systems based on the recent communication demand. This technique, by pre-coding CSI (the channel state information) at the transmitter, is based on UCD (Uniform Channel Decomposition) algorithm for MIMO system. By Uniform Channel decomposition of channel matrix, the algorithm can decompose a MIMO downlink channel into multiple identical sub-channels. The power allocation applied to each sub channel in MIMO system is identical, and the MIMO channel’s capacity isn’t reduce when the SNR (Signal Noise Ratio) is low. The simulations show that the UCD scheme has a better performance than GMD (Geometric Mean Decomposition) scheme even without the use of error-correcting codes, and the Symbol Error Rate (SER) of UCD algorithm is lower than GMD’s at the same SNR. Consequently, MIMO system gets a better interference performance by UCD algorithm.


2017 ◽  
Vol 67 (6) ◽  
pp. 668
Author(s):  
Qingzhu Wang ◽  
Mengying Wei ◽  
Yihai Zhu

<p class="p1">To make full use of space multiplexing gains for the multi-user massive multiple-input multiple-output, accurate channel state information at the transmitter (CSIT) is required. However, the large number of users and antennas make CSIT a higher-order data representation. Tensor-based compressive sensing (TCS) is a promising method that is suitable for high-dimensional data processing; it can reduce training pilot and feedback overhead during channel estimation. In this paper, we consider the channel estimation in frequency division duplexing (FDD) multi-user massive MIMO system. A novel estimation framework for three dimensional CSIT is presented, in which the modes include the number of transmitting antennas, receiving antennas, and users. The TCS technique is employed to complete the reconstruction of three dimensional CSIT. The simulation results are given to demonstrate that the proposed estimation approach outperforms existing algorithms.</p>


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Kasturi Vasudevan ◽  
A. Phani Kumar Reddy ◽  
Gyanesh Kumar Pathak ◽  
Shivani Singh

Detecting the presence of a valid signal is an important task of a telecommunication receiver. When the receiver is unable to detect the presence of a valid signal, due to noise and fading, it is referred to as an erasure. This work deals with the probability of erasure computation for orthogonal frequency division multiplexed (OFDM) signals used by multiple input multiple output (MIMO) systems. The theoretical results are validated by computer simulations. OFDM is widely used in present day wireless communication systems due to its ability to mitigate intersymbol interference (ISI) caused by frequency selective fading channels. MIMO systems offer the advantage of spatial multiplexing, resulting in increased bit-rate, which is the main requirement of the recent wireless standards like 5G and beyond.


Sign in / Sign up

Export Citation Format

Share Document