scholarly journals Image Steganography by Modified Simple Linear Iterative Clustering

Steganography is an information security technique that consists of concealing secret data into digital medias including videos, texts, network protocols and images. In this paper, a steganography method to dissimulate the secret information in gray-scale images is proposed; the dissimulation is adapted to the cover image’s texture, data is hidden in the edge areas. The edge pixels are selected by over-segmentation using Modified Simple Linear Iterative Clustering (M-SLIC). This algorithm allows to decompose the cover image into K regions which we call superpixels. The image’s texture and the amount of the secret data are the factors that help to determine the value of the parameter K. Choosing the pixels of complex regions to conceal secret information is due to the fact that the human visual system is designed to notice changes in the pixels of smooth areas. Therefore, edge areas tolerate larger changes than smooth areas without causing detectable distortions. Experiment on a large set of images were carried out; results illustrate the good performance of the proposed work in terms of capacity, security and imperceptibility in comparison to recent works.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Avinash K. Gulve ◽  
Madhuri S. Joshi

The image steganography systems use either the spatial domain or the frequency domain to hide the secret information. The proposed technique uses spatial domain technique to hide secret information in the frequency domain. The cover image is transformed using integer wavelet transform to obtain four subbands: LL, LH, HL, and HH. Then, the PVD approach is used to hide the secret information in the wavelet coefficients of all the four subbands. For improving the security of the hidden information, the proposed method first modifies the difference between two wavelet coefficients of a pair and then uses the modified difference to hide the information. This makes extraction of secret data from the stego image difficult even if the steganography method fails. The result shows that the proposed technique outperforms other PVD based techniques in terms of security of secret information and hiding capacity of cover image.


Author(s):  
Chin-Chen Chang ◽  
Kuo-Feng Hwang

A simple image hiding scheme in spatial domain is proposed in this chapter. The main idea is to utilize a threshold mechanism to embed as much information of the secret image into the cover image as possible. The changing of the cover image is hard to be discovered by the human eyes because the threshold mechanism is setup especially to fit the human visual system. The experimental results show that the human visual system has improved the quality in terms of perceptibility. On the hiding capacity issue, the proposed method has capability to embed two times the size of the secret image of previous work. A partial encryption strategy is used for the security of the secret image. In addition, a two-dimensional permutation function, torus automorphism, is also introduced in this chapter.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinliang Bi ◽  
Xiaoyuan Yang ◽  
Chao Wang ◽  
Jia Liu

Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.


Author(s):  
Chantana Chantrapornchai ◽  
Jitdumrong Preechasuk

Steganography is one of the techniques used to communicate secret data through the cover media such as images, videos, audio, texts etc. In this work, we consider the algorithms of steganography based on DCT and wavelet transform. The aspects of media quality after hiding the information in the digital media are considered. Particularly, we compare the performance of the prototype algorithms, representing the DCT and wavelet-based image steganography algorithms respectively, using the PSNR, capacity, robustness and accuracy aspects. For video steganography, with various wavelet transforms, we compare the quality of the derived information, when frames are dropped and the effects of payload is studied. The application of using such steganography algorithm which can embed multiple messages, each of which requires a separate key is proposed. The application can estimate the capacity used and capacity remains for the given cover image and texts.


Author(s):  
Kokila B. Padeppagol ◽  
Sandhya Rani M H

Image steganography is an art of hiding images secretly within another image. There are several ways of performing image steganography; one among them is the spatial approach.The most popular spatial domain approach of image steganography is the Least Significant Bit (LSB) method, which hides the secret image pixel information in the LSB of the cover image pixel information. In this paper a LSB based steganography approach is used to design hardware architecture for the Image steganography. The Discrete Wavelet Transform (DWT) is used here to transform the cover image into higher and lower wavelet coefficients and use these coefficients in hiding the secret image. the design also includes encryption of secret image data, to provide a higher level of security to the secret image. The steganography system involving the stegno module and a decode module is designed here. The design was simulated, synthesized and implemented on Artix -7 FPGA. The operation hiding and retrieving images was successfully verified through simulations.


2019 ◽  
Vol 8 (4) ◽  
pp. 11473-11478

In recent days, for sending secret messages, we require secure internet. Image steganography is considered as the eminent tool for data hiding which provides better security for the data transmitted over internet. In the proposed work, the payload data is embedded using improved LSB-mapping technique. In this approach, two bits from each pixel of carrier image are considered for mapping and addition. Two bits of payload data can be embedded in one cover image pixel hence enhanced the hiding capacity. A logical function on addition is applied on 1st and 2nd bits of cover image pixel, and a mapping table is constructed which gives solution for data hiding and extraction. Simple addition function on stego pixel is performed to extract payload data hence increases the recovery speed. Here the secret data is not directly embedded but instead mapped and added with a number using modulo-4 strategy. Hence the payload data hidden using proposed approach provide more security and it can resist against regular LSB decoding approaches. The proposed work is implemented and tested for several gray scale as well as color images and compared with respect to parameters like peak signal to noise ratio and MSE. The proposed technique gives better results when compared and histogram of cover and stego images are also compared.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1906
Author(s):  
Hyeokjoon Kweon ◽  
Jinsun Park ◽  
Sanghyun Woo ◽  
Donghyeon Cho

In this paper, we propose deep multi-image steganography with private keys. Recently, several deep CNN-based algorithms have been proposed to hide multiple secret images in a single cover image. However, conventional methods are prone to the leakage of secret information because they do not provide access to an individual secret image and often decrypt the entire hidden information all at once. To tackle the problem, we introduce the concept of private keys for secret images. Our method conceals multiple secret images in a single cover image and generates a visually similar container image containing encrypted secret information inside. In addition, private keys corresponding to each secret image are generated simultaneously. Each private key provides access to only a single secret image while keeping the other hidden images and private keys unrevealed. In specific, our model consists of deep hiding and revealing networks. The hiding network takes a cover image and secret images as inputs and extracts high-level features of the cover image and generates private keys. After that, the extracted features and private keys are concatenated and used to generate a container image. On the other hand, the revealing network extracts high-level features of the container image and decrypts a secret image using the extracted feature and a corresponding private key. Experimental results demonstrate that the proposed algorithm effectively hides and reveals multiple secret images while achieving high security.


Author(s):  
Balkar Singh

In this paper, a novel image steganography approach is proposed to enhance the visual quality of stego image. The cover image is decomposed using Discrete Wavelet Transform (DWT) to produce wavelet subbands and threshold value is calculated for each higher frequency wavelet subbands. Wavelet coefficients having magnitude larger than the threshold of its subband are selected to embed the secret data. Semi Hexadecimal Code (SHC) is proposed to convert pixel value of secret image into smaller equivalent value so that it distorts stego image as less as possible. Experimental results shows that maximum PSNR between cover image and stego image is more than 75 dB .Proposed approach is also compared with the existing approaches and this comparison shows that the proposed approach is better than the existing approaches. 


2021 ◽  
Author(s):  
Ratan Kumar Basak ◽  
Ritam Chatterjee ◽  
Paramartha Dutta ◽  
Kousik Dasgupta

Abstract This paper presents a high capacity steganographic approach with secret message validation scheme at the receiver end. The proposed idea develops specifically for animated GIF, the cover media, to conceal secret text messages where Least Significant Digit (LSD) method is employed to embed secret information in the form of ASCII value. To validate the secret information at the receiver end, the secret text is encoded with Secure Hash Algorithm-1(SHA1) which is subsequently embedded in certain pre-defined portion of the cover media. The proposed algorithm is experimented on a large set of colored animated image sequences by varying text messages which produces satisfactory results. The proposed method also maintains good visual perceptibility while securing high embedding capacity


Sign in / Sign up

Export Citation Format

Share Document