scholarly journals Assessment of Soil Erosion in Siruvani Watersheds based on USLE and Hypsometric Curve Methods

Soil erosion poses a serious threat over the maintenance activities of a reservoir and its watershed. This study has been taken us to assess the extent of soil erosion in the watersheds of the Siruvani Reservoir located in the district of Kerala. Two methods namely, Universal Soil Loss equation (USLE) and Hypsometric curve methods are adapted in this study. Hypsometry of watersheds (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The watersheds of Siruvani Reservoir were delineated from the generated Digital Elevation Model (DEM) using Geographic Information System (GIS). Various set of data like land use map, rainfall and soil map have been used for this analysis to generate five factors namely finally, the soil erosion risk map was created to identify the regions which are susceptible to erosion. Hypsometric analysis deals with measurement of the interrelationships between basin area and altitude of basin which has been used to understand the influence of various factors such as climate, geology and tectonic changes. GIS provides advanced tools to obtain hypsometric information and also helps to estimate the associated parameters of landforms. The entire study area has been sub-divided into 5 watersheds for hypsometric analysis and their area ranges from 1.77 to 6.94 km2. The hypsometric curve of the whole the watersheds reflects the mature geomorphic terrain whereas hypsometric integral indicates that the drainage basin has already eroded per cent of land masses. These findings would emphasize the importance of soil and water conservation measures to be taken up in the Siruvani watersheds for controlling further erosion, reducing the sediment outflows and conserve water

Soil erosion poses a serious threat over the maintenance activities of a reservoir and its watershed. This study has been taken us to assess the extent of soil erosion in the watersheds of the Siruvani Reservoir located in the district of Kerala. Two methods namely, Universal Soil Loss equation (USLE) and Hypsometric curve methods are adapted in this study. Hypsometry of watersheds (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The watersheds of Siruvani Reservoir were delineated from the generated Digital Elevation Model (DEM) using Geographic Information System (GIS). Various set of data like land use map, rainfall and soil map have been used for this analysis to generate five factors namely finally, the soil erosion risk map was created to identify the regions which are susceptible to erosion. Hypsometric analysis deals with measurement of the interrelationships between basin area and altitude of basin which has been used to understand the influence of various factors such as climate, geology and tectonic changes. GIS provides advanced tools to obtain hypsometric information and also helps to estimate the associated parameters of landforms. The entire study area has been sub-divided into 5 watersheds for hypsometric analysis and their area ranges from 1.77 to 6.94 km2. The hypsometric curve of the whole the watersheds reflects the mature geomorphic terrain whereas hypsometric integral indicates that the drainage basin has already eroded per cent of land masses. These findings would emphasize the importance of soil and water conservation measures to be taken up in the Siruvani watersheds for controlling further erosion, reducing the sediment outflows and conserve water.


2013 ◽  
Vol 864-867 ◽  
pp. 2799-2803
Author(s):  
Wei Li ◽  
Wen Yi Fan ◽  
Xue Gang Mao ◽  
Lin Zhao

Uses 2011 years TM/ETM images classification were land uses/cover type figure, combination Great Khinggan area digital elevation model (DEM), and soil type distribution figure and research regional rainfall information, we got all factors values of space distribution in the USLE model, got soil erosion volume estimates data and soil erosion strength distribution figure based on grid cell data. Result indicate that the micro-absolute percentage of erosion throughout the study area, with increasing slope, area of erosion and erosion gradually reduce trend increases with the elevation increases, reduced erosion area after, generally good soil and water conservation in the region.


2018 ◽  
Vol 40 (1) ◽  
pp. 500 ◽  
Author(s):  
Ch. Tsimi ◽  
A. Ganas ◽  
N. Soulakellis ◽  
O. Kairis ◽  
S. Valmis

The study area is located on the western part of the Gulf of Corinth which is considered as a paradigm of an active rift system in Greece. This rift was formed by normal slip on big faults which extend the crust of the Earth in the N-S direction. The morphotectonic indices (hypsometric curve, hypsometric integral, drainage basin asymmetry, ratio of valley floor width to valley height) have been estimated using the 20-m digital elevation model of this area and the ARC software. The normal faults of the study area have been extracted by use of a DEM mosaic of 20-m pixel size, satellite images from Landsat 7 ETM+ and SRTM 90m. Our results highlight the recent activity of the Psathopyrgos normal fault on the basis of a series of morphotectonic evidence and suggest the existence of a single fault segment for a distance of 16 km.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Alaa Khallouf ◽  
Swapan Talukdar ◽  
Endre Harsányi ◽  
Hazem Ghassan Abdo ◽  
Safwan Mohammed

Abstract Background Soil erosion is a major threat to the natural ecosystem and agricultural sector in the western part of Lattakia Governorate, Syrian Arab Republic. The main goals of this research are to investigate erosion risk by using the Coordination of Information on the Environment (CORINE) Model and to prioritize areas for conservation practices. To achieve these goals, soil samples were collected from the field, the climatic data (i.e., rainfall) and Digital Elevation Model (DEM) were obtained and utilized to perform CORINE model in Geographic Information System (GIS) environment. Results The results showed that only 13.2% of the study area was classified as high erodible. In addition, 45.24%, 49.15% and 5.29% of the study area were under low, moderate and high actual erosion risk, respectively. This research identified slope and land use/land cover as key factors responsible for soil erosion in the study area. Conclusions The CORINE model acknowledged as a good tool for predicting soil erosion and highlighting the areas affected by soil erosion in the study area with high precision.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
W. R. Singh ◽  
S. Barman ◽  
G. Tirkey

AbstractMorphologic parameters of a watershed could help in segregating critical sub-watersheds for taking up conservation practices and mitigation interventions. Determination of critical watersheds or prioritization of sub-watersheds is inevitable for efficient and sustainable watershed management programs and allocation of its natural resources. The traditional methods of determination of morphologic parameters are time consuming, expensive and requires huge labor. However, the process becomes easier, cheaper and faster with the advent of Geographical Information System (GIS) and remote sensing technologies. In the present study, a combined approach of using toposheet, remotely sensed digital elevation model and morphometric ArcGIS toolbox has been adopted to determine morphometric parameters in Dudhnai river basin, a sub-basin of river Brahmaputra which is prone to both erosion and sedimentation. Seven sub-watersheds of Dudhnai have been prioritized by using the morphometric parameters and ranked them according to its vulnerability to soil erosion. The results of bifurcation ratio, drainage density, drainage intensity and constant of channel maintenance showed that Dudhnai watershed is a well-dissected watershed with less risk to flooding and soil erosion. However, significantly high values of infiltration number and ruggedness number obtained are indicative of very low infiltration which may result in high surface runoff and soil erosion. The study also revealed that channel erosion is stronger than sheet erosion in the basin. The prioritization of the sub-watersheds implied that Chil sub-watershed is the most susceptible sub-watershed that needs greater attention for soil and water conservation measures. The results of the present study could aid various stakeholders who are involved in the watershed development and management programs.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 777 ◽  
Author(s):  
Yared Mesfin Tessema ◽  
Justyna Jasińska ◽  
Lemma Tiki Yadeta ◽  
Marcin Świtoniak ◽  
Radosław Puchałka ◽  
...  

As a form of environmental degradation, soil degradation directly or indirectly affects many lives through decreased agricultural yields, increased flooding and habitat loss. Soil loss has been increasing in most parts of the world and is most pronounced in tropical developing countries where there is poor or zero soil and water conservation (SWC) planning and management activities. Identifying areas prone to soil erosion has also been inadequate, having not been informed by dedicated scientific studies. This is true of the poorly understood watershed of Welmel in the Oromia region of Ethiopia, where most livelihoods heavily rely upon agriculture. To plan effective SWC management techniques, a solid knowledge of spatial variations across different climate, land use and soil erosion is essential. This study has aimed at identifying potential areas needing SWC practices through conducting a spatial modeling of soil erosion within the Welmel watershed’s Genale Dawa basin using a geographic information system (GIS), remote sensing (RS), multiple factors as land uses and climate. The Welmel catchment is located in southeastern Ethiopia and extends between 5°0′0″ N–7°45′00″ N and 39°0′0″ E–41°15′0″ E. The revised universal soil loss equation (RUSLE), which was previously adapted to Ethiopian conditions, was used to estimate potential soil loss. It used information on interpolated rainfall erosivity (R), soil erodibility (K), vegetation cover (C) and topography (LS) from a digital elevation model (DEM) and that of conservation practices (P) from satellite images. The study demonstrates that the RUSLE using GIS and RS considering different climates and land management practices provides a great advantage in that it allows one to spatially analyze multilayer data in order to identify soil erosion-prone areas and thereby develop the most appropriate watershed management strategy. The mean soil loss was determined to be 31 tons ha−1 year−1 and it varied between 0 and 169 tons ha−1 year−1. About 79% of the watershed lies within the tolerable level of 11 tons ha−1 year−1. However, the remaining 21% has a high soil truncation trait, mainly due to its steeper slope and use as cultivated land. Our study identifies cultivated and deforested areas of the watershed as the potential SWC practice demanding areas. Thus, the application of RUSEL using GIS across different land management practices and climate zones is a potential tool for identifying SWC demanding sites. This remains helpful in efforts towards sustainable land management practices for the sustainable livelihood of the local human population.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Caleb Akoji Odiji ◽  
Olaide Monsor Aderoju ◽  
Joseph Bisong Eta ◽  
Idris Shehu ◽  
Adama Mai-Bukar ◽  
...  

AbstractThe upper Benue River watershed is undergoing remarkable modifications due to man-made and natural phenomena. Hence, an evaluation is required to understand the hydrological process of the watershed for planning and management strategies. This study aimed to assess the morphometric characteristics and prioritize the upper Benue River watershed. The boundary of the watershed and sub-watersheds, as well as stream networks, was extracted from the digital elevation model (DEM) coupled with hydrological and topographic maps. Twenty-eight morphometric parameters under three categories, i.e. linear, areal, and relief aspects were computed and mapped. Findings from the study revealed that the watershed is a seventh stream order system characterized by a dendritic drainage pattern. The result also showed that 4821 streams were extracted with a cumulative length of 30,232.84 km. The hypsometric integral of the watershed was estimated to be 0.22, indicating that it is in the old stage. In the prioritization of the watershed, the morphometric variables were utilized to calculate and classify the compound factor. The result showed that sub-watersheds 12, 16, 18, 24, 26, and 27 were ranked as very high priority for which conservation measures are required to mitigate the risk of flood and erosion. The outcome of this study can be used by decision-makers for sustainable watershed management and planning.


2013 ◽  
Vol 59 (No. 2) ◽  
pp. 87-91 ◽  
Author(s):  
M. Nasiri

The maps of altitude, geology, vegetation cover and land use were prepared and classified as the main criteria to locate soil and water conservation programs. Analytical Hierarchy Process (AHP) was used to determine the relative priorities of these criteria by pairwise comparison. All the thematic maps were then integrated using the overlay process in Geographical Information System (GIS) and the final map of soil erosion risk was produced. Results indicated that vegetation cover was given the highest weight (0.494). The geology was assigned the second highest weight (0.313), as the main cause of initiation of the erosion of erodible lands. Land-use change has a local influence on soil erosion, so it was assigned the third weight (0.151). Altitude is a low-impact variable for predicting the water and soil conservation areas.  


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 248 ◽  
Author(s):  
Mariaelena Cama ◽  
Calogero Schillaci ◽  
Jan Kropáček ◽  
Volker Hochschild ◽  
Alberto Bosino ◽  
...  

Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality, especially in developing countries, such as Ethiopia, where rapid population growth and climatic changes affect widely mountainous areas. The Meskay catchment is a head catchment of the Jemma Basin draining into the Blue Nile (Central Ethiopia) and is characterized by high relief energy. Thus, it is exposed to high degradation dynamics, especially in the lower parts of the catchment. In this study, we aim at the geomorphological assessment of soil erosion susceptibilities. First, a geomorphological map was generated based on remote sensing observations. In particular, we mapped three categories of landforms related to (i) sheet erosion, (ii) gully erosion, and (iii) badlands using a high-resolution digital elevation model (DEM). The map was validated by a detailed field survey. Subsequently, we used the three categories as dependent variables in a probabilistic modelling approach to derive the spatial distribution of the specific process susceptibilities. In this study we applied the maximum entropy model (MaxEnt). The independent variables were derived from a set of spatial attributes describing the lithology, terrain, and land cover based on remote sensing data and DEMs. As a result, we produced three separate susceptibility maps for sheet and gully erosion as well as badlands. The resulting susceptibility maps showed good to excellent prediction performance. Moreover, to explore the mutual overlap of the three susceptibility maps, we generated a combined map as a color composite where each color represents one component of water erosion. The latter map yields useful information for land-use managers and planning purposes.


Sign in / Sign up

Export Citation Format

Share Document