scholarly journals An Analogy of a Network to an Electro Hydrodynamic Fluid Flow to Analyze the Energy Required for Transmitting a Packet in a Network Susceptible to Multiple Failures

Computer networks have become pervasive to human life and now, people are inseparable from connectivity. The world’s networking communities have been constantly raising the bar of standards to provide the best possible service to their users. Every packet drop is treated as a blunder and a game ender by the companies. Standards lead to organizations that govern the service rules and policies, penalize the companies heavily if packets are lost, connections are severed midconversation. This makes the companies spare no expense into developing smarter and faster rerouting methods, packet retransmission protocols. The observation of these systems leads to believe that the system is modeled after an electro hydro dynamic fluid flow through a charged medium. In this paper the analogy and the analysis of the energy spent for rerouting packets in case of node failure, is presented in its complete mathematical form.

2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

2014 ◽  
Vol 17 (11) ◽  
pp. 1019-1029 ◽  
Author(s):  
Mohammad Zafari ◽  
Masoud Panjepour ◽  
Mohsen Davazdah Emami ◽  
Mahmood Meratian

2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Sign in / Sign up

Export Citation Format

Share Document