scholarly journals Performance Evaluation of Mimo System with Massive Antenna Arrays

In the ground of digital word, wireless communication system has widespread functions. The demand for wireless communication is growing day by day. All users want better quality service in scope of wireless communication. Due to high bit error rate (BER), low signal to noise ratio (SNR), limited bandwidth and high standard deviation (SD) of phase error conventional wireless communiqué systems like SISO, SIMO and MISO flops to gather the mounting demand of users. Therefore a new technique MIMO system is realized whose performance is evaluated by parameters BER, SNR and SD of Phase Error. Latest approach for increasing the performance of virtual MIMO communications within peers by ill-treatment situation with giant antenna arrays is developed. MIMO provides low BER and low SD of Phase Error with increased SNR, which forms a good feature for wireless communication system. In this paper, performance of MIMO is assessed under Nakagami-m and Rayleigh fading channels. For a wireless system BER and SD of phase error should be minimum, which is achieved in MIMO system.

Author(s):  
Viktor Magnitskiy

The article describes the Simulink model of the hardware of the MIMO wireless communication system. The model includes a CRC generator, QPSK, OFDM modulator, and antenna arrays at the transmitter and receiver. The presented model makes it possible to simulate the expensive transmit-receive equipment of the MIMO system, and also illustrates the capabilities of Simulink.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saumya Srivastava ◽  
Kamal Kishor Upadhyay ◽  
Narendra Kumar Shukla

Abstract In this paper, simulative evaluation of the inter-aircraft optical wireless communication system with the use of different modulation formats like return to zero (RZ), non return to zero (NRZ) and raised cosine by signal to noise ratio (SNR) and quality factor (Q-factor). Performance parameters are attenuation level, transmitting pointing error and scintillation are used to analyse the performance of the system. Including the pre- and post-amplifier configuration in the system, a link range of 100 km is achieved at an acceptable bit error rate and the performance of the system is also enhanced at a 5 Gbps data rate as compared to the earlier detection mechanism.


Author(s):  
Md. Firoz Ahmed ◽  
Md. Tahidul Islam ◽  
Abu Zafor Md. Touhidul Islam

Wireless communications are among the rapidly growing fields in our current life and have a massive effect on every aspect of our everyday life. In this paper, the performance of the various digital modulation techniques (BPSK, DPSK, QPSK, and QAM) based wireless communication system on the audio signal transmission through the additive Gaussian Noise (AWGN) channel is assessed on the basis of bit error rate (BER) as a function of the signal-to-noise ratio (SNR). Based on the results of this study, BPSK modulation outperforms the DPSK, QPSK, and QAM modulation strategies in the MIMO MC-CDMA VBlast based wireless communication system. The digital modulation of QPSK shows the worst performance in audio signal transmission especially in comparison to other digital modulations. It is clear from the current simulation study based on MATLAB that the V-Blast encoded 4×4 MIMO MC-CDMA wireless system with minimum mean square error (MMSE) signal detection and 1⁄2-rated convolution and cyclic redundancy check (CRC) channel encoding strategies show good performance utilizing BPSK digital modulation in audio signal transmission.


Author(s):  
Guodong Tian ◽  
Rongfang Song

AbstractIntelligent reflecting surface (IRS) has emerged as an innovative and disruptive solution to boost the spectral and energy efficiency and enlarge the coverage of wireless communication systems. However, the existing literature on IRS mainly concentrates on wireless communication systems assisted by single or multiple distributed IRSs, which are not always effective. In view of this issue, this paper considers a special double-IRS-assisted wireless communication system, where IRS1 and IRS2 are deployed near the base station (BS) and the user, respectively, and the transmitted signals reach the user via the cascaded BS-IRS1-IRS2-user channel only. We cooperatively optimize transmit and passive beamforming on the two IRSs based on the particle swarm optimization (PSO) algorithm to maximize the received signal power. Simulation indicates that despite no direct line-of-sight (LoS) path from the BS to the user, an excellent signal-to-noise ratio (SNR) is available at the receiver with the aid of two IRSs, which demonstrates that it is feasible to assist communication by double reflection links composed of two IRSs. Additionally, we unexpectedly find that when the positions of the two IRSs are fixed, by exchanging the positions of the BS and the user, the obtainable SNRs are similar.


2019 ◽  
Vol 27 (2) ◽  
pp. 105-110
Author(s):  
A. B. Gnilenko ◽  
S. V. Plaksin

Millimeter waves are now considered as an important part of 5G spectrum. Higher frequencies provide larger bandwidth giving the ability to support very high data rate, ultra high capacity and very low latency. The utilization of millimeter wave frequency bands for 5G mobile applications requires effective solutions in the design of antennas and antenna arrays which are the key parts of modern communication systems. In this paper a 4x4 microstrip patch antenna array sub-module is presented to be a part of 5G wireless communication system. The antenna array is designed and optimized to operate at a frequency of 85 GHz which corresponds to the middle of the second atmospheric transparency window. The antenna array is simulated using the time domain solver of the CST Microwave Studio software package. Simulation results are demonstrated and discussed for an optimized array. The designed patch antenna array provides good directivity characteristics with a main lobe magnitude of 16 dBi, angular width of 28 degree and can be applied as a part of a wireless communication system operating at a high frequency band of 5G frequency range.


2005 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
Xiu Chundi ◽  
Wang Jing

The information theoretic capacity of a single user distributed wireless communication system (DWCS) is investigated and compared to that of traditional cellular MIMO system. Simulation results show that, DWCS always outperforms traditional MIMO system, and the capacity gain increase with the incremental number of the fixed antennas. Moreover, the use of distributed antennas in DWCS can average the shadowing effect and solve the near-far problem efficiently.


Author(s):  
Sarala Patchala ◽  
M. Sailaja

: The next generation 5g communications are used with baseband precoders and beam forming. The technology is needed to update the all the available characteristics in the present wireless communication system. In the mmWave MIMO system the number of antenna are increased to improve the spectral efficiency of the system.


2021 ◽  
Author(s):  
chathuranga basnayaka

<div>Age of Information (AoI) measures the freshness of data in mission critical Internet-of-Things (IoT) applications i.e., industrial internet, intelligent transportation systems etc. In this paper, a new system model is proposed to estimate the average AoI (AAoI) in an ultra-reliable low latency communication (URLLC) enabled wireless communication system with decodeand- forward relay scheme over the quasi-static Rayleigh block fading channels. Short packet communication scheme is used to meet both reliability and latency requirements of the proposed wireless network. By resorting finite block length information theory, queuing theory and stochastic processes, a closed-form expression for AAoI is obtained. Finally, the impact of the system parameters, such as update generation rate, block length and block length allocation factor on the AAoI are investigated. All results are validated by the numerical results.</div>


Sign in / Sign up

Export Citation Format

Share Document