scholarly journals Taguchi Approach for Recognizing the Most Influential Factor in Improving IEEE 802.15.4 Performance

Author(s):  
M. Janardhan ◽  
◽  
S. Pallam Shetty ◽  
PVGD Prasad Reddy ◽  
◽  
...  

WPAN using IEEE 802.15.4 protcol operated in non beaconing mode an attempt has made to find out the most significant factor of defacto parameters of IEEE 802.15.4 to enhance the performance by minimizing energy consumption and to enhance the network lifetime of the Wireless Personal Area Networks(WPAN). The factors include Buffer size, Beacon Interval, Back-off-transmission has an ideal impact on QoS metrics in IEEE 802.15.4 protocol. A Design of experiments have been simulated to an optimum level using the taguchi approach. The experimental results from the taguchi approach reveales that Back-of-transmission as the most significant factor for IEEE 802.15.4 in minimizing the power consumption in the WPAN.

2018 ◽  
Vol 11 (1) ◽  
pp. 78 ◽  
Author(s):  
Yasmin M. Amin ◽  
Amr T. Abdel-Hamid

The IEEE 802.15.4 standard defines the PHY and MAC layer specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). With the proliferation of many time-critical applications with real-time delivery, low latency, and/or specific bandwidth requirements, Guaranteed Time Slots (GTS) are increasingly being used for reliable contention-free data transmission by nodes within beacon-enabled WPANs. To evaluate the performance of the 802.15.4 GTS management scheme, this paper introduces a new GTS simulation model for OMNeT++ / MiXiM. Our GTS model considers star-topology WPANs within the 2.4 GHz frequency band, and is in full conformance with the IEEE 802.15.4 – 2006 standard. To enable thorough investigation of the behaviors and impacts of different attacks against the 802.15.4 GTS mechanism, a new GTS attacks simulation model for OMNeT++ is also introduced in this paper. Our GTS attacks model is developed for OMNeT++ / NETA, and is integrated with our GTS model to provide a single inclusive OMNeT++ simulation model for both the GTS mechanism and all known-to-date attacks against it.


2021 ◽  
Author(s):  
Vida Azimi

Machine-to-Machine communication (M2M) refers to automated applications executing on smart devices or machines that communicate through a network with little or no human intervention at all. By enabling smart devices to communicate directly with one another, M2M communications technology has the potential to radically change the world around us and the way that we interact with objects. Many applications can benefit from M2M communications, such as transportation, health care, smart energy production, transmission, and distribution, logistics, city automation and manufacturing, security and safety, and others. This work describes an approach to implement M2M communications using the well-known IEEE 802.15.4 / ZigBee communications standard for low data rate wireless personal area networks. In order to achieve better performance for M2M traffic, we propose some improvements in the protocol. Our simulation results confirm the validity


2009 ◽  
pp. 1037-1043
Author(s):  
João Henrique Kleinschmidt ◽  
Walter Cunha Borelli

Bluetooth (Bluetooth SIG, 2004) and ZigBee (ZigBee Alliance, 2004) are short-range radio technologies designed for wireless personal area networks (WPANs), where the devices must have low power consumption and require little infrastructure to operate, or none at all. These devices will enable many applications of mobile and pervasive computing. Bluetooth is the IEEE 802.15.1 (2002) standard and focuses on cable replacement for consumer devices and voice applications for medium data rate networks. ZigBee is the IEEE 802.15.4 (2003) standard for low data rate networks for sensors and control devices. The IEEE defines only the physical (PHY) and medium access control (MAC) layers of the standards (Baker, 2005). Both standards have alliances formed by different companies that develop the specifications for the other layers, such as network, link, security, and application. Although designed for different applications, there exists some overlap among these technologies, which are both competitive and complementary. This article makes a comparison of the two standards, addressing the differences, similarities, and coexistence issues. Some research challenges are described, such as quality of service, security, energy-saving methods and protocols for network formation, routing, and scheduling.


IEEE Network ◽  
2001 ◽  
Vol 15 (5) ◽  
pp. 12-19 ◽  
Author(s):  
J.A. Gutierrez ◽  
M. Naeve ◽  
E. Callaway ◽  
M. Bourgeois ◽  
V. Mitter ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Deze Zeng ◽  
Song Guo ◽  
Victor Leung ◽  
Jiankun Hu

Wireless personal area networks (WPANs) are getting popular in a variety of fields such as smart home, office automation, and e-healthcare. In WPANs, most devices are considerably energy constrained, so the communication protocol should be energy efficient. The IEEE 802.15.4 is designed as a standard protocol for low power, low data rate, low complexity, and short range connections in WPANs. The standard supports allocating several numbers of collision-free guarantee time slots (GTSs) within a superframe for some time-critical transmissions. Recently, COPE was proposed as a promising network coding architecture to essentially improve the throughput of wireless networks. In this paper, we exploit the network coding technique at coordinators to improve energy efficiency of the WPAN. Some related practical issues, such as GTS allocation and multicast, are also discussed in order to exploit the network coding opportunities efficiently. Since the coding opportunities are mostly exploited, our proposal achieves both higher energy efficiency and throughput performance than the original IEEE 802.15.4.


Sign in / Sign up

Export Citation Format

Share Document