scholarly journals Proximate Composition of Minor Millets from Cold Semi-Arid Regions

The nutritional importance of minor millets growing in geographically and environmentally isolated semi-arid regions remains largely unexplored, which has led to it being underutilized for diet diversification. In this study, the proximate composition of three species of minor millets, namely, Barnyard millet (Echinochloa frumentacea),Finger millet (Eleusine coracana) and Foxtail millet(Setaria italica), grown in traditional millet cultivating regions (cold semi-arid) of the Himalayan range, have been analyzed. Two high altitude locations of contrasting cold temperatures in this region were selected for analysis. Dehradun which exhibits a temperature of 25-27℃, is located at 640 masl. (Meters Above Sea Level) in Uttarakhand West (UW), whereas, the second location, Pithoragarh which exhibits a temperature of 15-17℃ is located at 1514 masl. in Uttarakhand East (UE). The results of this study record a 30.75 percent increase in average protein content of Barnyard millet grains when the same seed stock was grown at the second region of lower temperature, i.e. Pithoragarh (15-17℃), as compared to Dehradun (15-17℃). A 42.66 percent increase in average fat content was also recorded for Barnyard millet grains when grown at Pithoragarh (15-17℃). The two other millet species, Finger millet and Foxtail millet, did not record significant differences in protein and fat contents, however, Foxtail millet displayed marginally increased levels of sodium and potassium. In contrast to the other components analyzed, Total Dietary Fiber (TDF) was found to decrease with growth at the comparatively colder location of Pithoragarh. A 36.71 percent decrease in TDF content was recorded for Barnyard millet, whereas, a 19.25 percent decrease was recorded for Finger millet. Foxtail millet displayed a marginal decrease of only 5.3 percent in TDF content with growth at Pithoragarh. Starch concentration and moisture content for all three species was also studied, but did not record any notable differences due to growth at the colder location of Pithoragarh. The results here indicate an important role of cold temperature and high altitude in regulating the proximate composition of minor millet grains. Studies which explore the proximate composition of millet cultivars in such geographically and environmentally distinct millet growing regions, may reveal new information regarding the nutritional importance of minor millets, and the ideal conditions of growth for maximum nutritional benefit.

1985 ◽  
Vol 105 (1) ◽  
pp. 31-38
Author(s):  
D. K. Muldoon

SUMMARYSorghum bicolor, Pennisetum americanum, Echinochloa utilis, Panicum miliaceum, Setaria italica and Eleusine coracana were grown with and without full irrigation on an alkaline clay soil at Trangie, Australia. Dry-matter yields and forage quality changes with time were measured in the 1st year. Grain yield was recorded over 2 years.Dry-matter accumulation was initially most rapid in sorghum and Japanese barnyard millet. Sorghum, pearl millet and finger millet produced the most dry matter; these were the latest to reach head emergence. The early-maturing proso millet and foxtail millet produced only 7 and l i t dry matter/ha respectively. These two millets, like sorghum and pearl millet, had a high nitrogen: sulphur ratio and low sodium concentration in the forage. Finger millet had a lower nitrogen: sulphur ratio and a sodium concentration that was surpassed only by Japanese barnyard millet.Irrigated sorghum consistently produced the highest grain yields: over 9 t/ha. Yields from the millets were: foxtail 6·0, finger 5·0, proso 3·5, pearl and Japanese barnyard millet 2·8–2·9 t/ha. Special features of the millets are discussed.


The Nucleus ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 217-239 ◽  
Author(s):  
M. Vetriventhan ◽  
Vania C. R. Azevedo ◽  
H. D. Upadhyaya ◽  
A. Nirmalakumari ◽  
Joanna Kane-Potaka ◽  
...  

AbstractCurrent agricultural and food systems encourage research and development on major crops, neglecting regionally important minor crops. Small millets include a group of small- seeded cereal crops of the grass family Poaceae. This includes finger millet, foxtail millet, proso millet, barnyard millet, kodo millet, little millet, teff, fonio, job’s tears, guinea millet, and browntop millet. Small millets are an excellent choice to supplement major staple foods for crop and dietary diversity because of their diverse adaptation on marginal lands, less water requirement, lesser susceptibility to stresses, and nutritional superiority compared to major cereal staples. Growing interest among consumers about healthy diets together with climate-resilient features of small millets underline the necessity of directing more research and development towards these crops. Except for finger millet and foxtail millet, and to some extent proso millet and teff, other small millets have received minimal research attention in terms of development of genetic and genomic resources and breeding for yield enhancement. Considerable breeding efforts were made in finger millet and foxtail millet in India and China, respectively, proso millet in the United States of America, and teff in Ethiopia. So far, five genomes, namely foxtail millet, finger millet, proso millet, teff, and Japanese barnyard millet, have been sequenced, and genome of foxtail millet is the smallest (423-510 Mb) while the largest one is finger millet (1.5 Gb). Recent advances in phenotyping and genomics technologies, together with available germplasm diversity, could be utilized in small millets improvement. This review provides a comprehensive insight into the importance of small millets, the global status of their germplasm, diversity, promising germplasm resources, and breeding approaches (conventional and genomic approaches) to accelerate climate-resilient and nutrient-dense small millets for sustainable agriculture, environment, and healthy food systems.


2021 ◽  
Vol 66 (1) ◽  
Author(s):  
Ambana Gouda Durgad

Finger millet was the most consumed among the urban consumers with 3.00 kg per month while other millets equally being consumed by the urban consumers, while foxtail millet, finger millet and little millet were consumed by rural consumers with higher consumption of foxtail millet. The monthly household food expenditure among the urban consumers, expenses made on groceries (40.21 percentage), expenditure on millet (15.33 percentage), purchasing minor millets were as nutritional and health benefits (96.67 percentage) followed by doctor’s advice (53.33 percentage) similarly, traditional staple food (93.33 percentage) followed by own production (80.00 percentage) for rural households. For each respondent, the part-worth’s were estimated using OLS regression analysis, rural consumers also found price to be the most important attribute accounting 26.11 per cent of relative importance, gaining awareness among consumers in consumption of millets for nutritional value and health benefits is improving gradually


2017 ◽  
Vol 9 (3) ◽  
pp. 1796-1800
Author(s):  
Dawn C. P. Ambrose ◽  
S. J. K. Annamalai ◽  
Ravindra Naik ◽  
Anurag Kumar Dubey ◽  
Subir Chakraborthy

A Millet Processing Centre for processing of minor millets in a tribal village in Tamil Nadu, has been established with the following millet processing machinery viz., Destoner, Millet Mill, Grain Polisher, Pulveriser, Flour Sifter and Packaging Machinery for enhancement of tribal livelihood. Performance studies on the machinery for processing minor millets viz., little millet, foxtail millet and finger millet grown in the tribal area were carried out. Based on the performance evaluation, the output capacity of destoner cum cleaner was found to be 230 kg/h and 233 kg/h for little and foxtail millet respectively with a cleaning efficiency of 89 and 90% respectively for the above millets. The performance of millet mill revealed that the output capacity was 90-92 kg/h for little and foxtail millet with a dehulling efficiency of 86 and 87% respectively with small percentage of brokens (< 5 %). The capacity of grain polisher was 60-61 kg/h with a polishing efficiency of 85% & 86% respectively for little and foxtail millet. The pulveriser was evaluated for finger millet flour making whereby the output capacity of the machine was 75 kg/h with a milling efficiency of 90% respectively. The cost economics revealed that the tribal farmers could save 85% of the processing cost. The benefit cost ratio was found to be 2.05.The total profit to the tribal Society through Millet Processing Centre was Rs. 21,000/- during the first harvesting season of millets. The above studies have paved way for satisfactory functioning of the Millet Processing Centre in the tribal area.


2015 ◽  
Vol 7 (2) ◽  
pp. 939-948 ◽  
Author(s):  
K. P. Singh ◽  
Rahul R. Poddar ◽  
K. N. Agrawal ◽  
Smrutilipi Hota ◽  
Mukesh K. Singh

In tribal areas of India, traditional methods of threshing of minor millets like little millet (Panicum sumatrense), M1, kodo millet (Paspalum scrobiculatum), M2, foxtail millet (Setaria italica), M3, proso millet (P. miliaceum), M4, barnyard millet (Echinochloa frumantacea), M5, finger millet (Eleusine coracana), M6 is done of beating by sticks or treading out the crop panicle under the feet of oxen. This operation is most time consuming, labour intensive, drudgery prone, uneconomical, lower output and obtain low quality products. A thresher for these millet crops was developed and optimization of the operating parameters with little millet was done by using Response surface methodology (RSM). The optimized parameters were 7.79% (d.b) moisture content, 105 kgh-1 feed rate, 625 rpm cylinder speed, 5 mm threshing sieve size which gave maximum threshing efficiency of 95.13% and cleaning efficiency of 94.12%. After optimization of parameters the thresher was tested for threshing of all the six minor millets with proper adjustments of sieve. Threshing capacity of M1, M2, M3, M4, M5 and M6 were obtained as 89, 137, 140, 91, 88 and 99 kg/h, respectively with more than 96% threshing efficiency and less than 2% broken grain.


2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Sign in / Sign up

Export Citation Format

Share Document