Growth, mineral composition and grain yield of irrigated and rainfed millets and sorghum

1985 ◽  
Vol 105 (1) ◽  
pp. 31-38
Author(s):  
D. K. Muldoon

SUMMARYSorghum bicolor, Pennisetum americanum, Echinochloa utilis, Panicum miliaceum, Setaria italica and Eleusine coracana were grown with and without full irrigation on an alkaline clay soil at Trangie, Australia. Dry-matter yields and forage quality changes with time were measured in the 1st year. Grain yield was recorded over 2 years.Dry-matter accumulation was initially most rapid in sorghum and Japanese barnyard millet. Sorghum, pearl millet and finger millet produced the most dry matter; these were the latest to reach head emergence. The early-maturing proso millet and foxtail millet produced only 7 and l i t dry matter/ha respectively. These two millets, like sorghum and pearl millet, had a high nitrogen: sulphur ratio and low sodium concentration in the forage. Finger millet had a lower nitrogen: sulphur ratio and a sodium concentration that was surpassed only by Japanese barnyard millet.Irrigated sorghum consistently produced the highest grain yields: over 9 t/ha. Yields from the millets were: foxtail 6·0, finger 5·0, proso 3·5, pearl and Japanese barnyard millet 2·8–2·9 t/ha. Special features of the millets are discussed.

2014 ◽  
Vol 38 (4) ◽  
pp. 689-704
Author(s):  
MS Hasan ◽  
MH Rashid ◽  
QA Rahman ◽  
MH Al-Mamun

A study was carried out in the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, Old Brahmaputra Flood Plains Soil (AEZ-9) during December 2001 to April 2002 to find out the effect of seed rates and NPK levels on dry matter accumulation and grain yield of foxtail millet (Setaria italica L. Beauv.). Four seed rates viz., 8,10,12, and 14 kg/ha and five levels of NPK fertilizers viz., N0P0K0, N10P8K5, N20P16K10, N30P24K15, and N40P32K20 were included in a split plot design with three replications. Dry matter accumulation pattern was determined by harvesting 10 plants randomly at 30, 60, 80, and 102 DAS (days after swing). The yield and yield contributing characters of foxtail millet were influenced by seed rates and NPK levels except tillers per plant and 1000-grain weight significantly. Generally its production rate was 0.86 t/ha when it was grown in char lands in sandy loam soils, the highest grain yield (1.62 t/ha) was produced by 10 kg seeds/ha, which was identical with 12 kg seeds/ha. In case of NPK levels, the treatment was N30P24K10. In case of interaction, the treatment combination 12 kg seeds/ha and N30P24K15 produced the highest grain yield (1.77 t/ha. In case of interaction, the treatment combination 12 kg seeds/ha and N,sub>30P24K15/ha gave the highest grain yield. DOI: http://dx.doi.org/10.3329/bjar.v38i4.19661 Bangladesh J. Agril. Res. 38(4): 689-704, December 2013


1988 ◽  
Vol 110 (1) ◽  
pp. 71-79 ◽  
Author(s):  
P. Q. Craufurd ◽  
F. R. Bidinger

SummaryThe phenotype of medium duration pearl millet varieties grown in West Africa differs from that of the shorter duration millets grown in India. African varieties are usually much taller, have longer panicles, fewer productive tillers, and a lower ratio of grain to above-ground dry-matter (harvest index). The effect of crop duration on plant phenotype was investigated in two hybrids using extended daylengths to increase the duration of the vegetative phase (GSl: sowing to panicle initiation). The two hybrids, 841A × J104 and 81A × Souna B, were considered to represent the Indian and African phenotype, respectively. Tiller production and survival, leaf area, and dry-matter accumulation and partition, were monitored over the season. Grain yield and its components were determined at maturity.The two hybrids responded similarly to the short and long daylength treatments. The duration of GSl was increased from 20 to 30 days, resulting in increased number of leaves, leaf area, and stem and total dry-matter accumulation; there was no effect on tiller production and survival, or on panicle growth rate. Grain yield was, therefore, the same in both GSl treatments, and harvest index (HI) was much reduced in the long GSl treatment owing to the increased stem growth. One evident effect of a longer GSl was on dry-matter partitioning between shoots; partitioning to the main stem (MS) was increased, whereas partitioning to the tillers was reduced.There was no difference in crop development, growth or yield between the two hybrids in either GSl treatment. The only significant differences were in the efficiency with which intercepted radiation was converted to dry matter, which was greater in 841A × J104 than in 81A × Souna B, and in the balance between MS and tillers; the grain yield of the MS was significantly greater in 81A x Souna B than in 841A × J104, but at the expense of number of productive tillers.The results demonstrate that both African and Indian phenotypes are equally productive under good agronomic conditions. The lower HI in longer duration African millets is a consequence of a much extended stem growth phase and therefore increased competition between stem and panicle during grain filling. Possible ways to increase grain yield in the medium duration African millets are considered.


The Nucleus ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 217-239 ◽  
Author(s):  
M. Vetriventhan ◽  
Vania C. R. Azevedo ◽  
H. D. Upadhyaya ◽  
A. Nirmalakumari ◽  
Joanna Kane-Potaka ◽  
...  

AbstractCurrent agricultural and food systems encourage research and development on major crops, neglecting regionally important minor crops. Small millets include a group of small- seeded cereal crops of the grass family Poaceae. This includes finger millet, foxtail millet, proso millet, barnyard millet, kodo millet, little millet, teff, fonio, job’s tears, guinea millet, and browntop millet. Small millets are an excellent choice to supplement major staple foods for crop and dietary diversity because of their diverse adaptation on marginal lands, less water requirement, lesser susceptibility to stresses, and nutritional superiority compared to major cereal staples. Growing interest among consumers about healthy diets together with climate-resilient features of small millets underline the necessity of directing more research and development towards these crops. Except for finger millet and foxtail millet, and to some extent proso millet and teff, other small millets have received minimal research attention in terms of development of genetic and genomic resources and breeding for yield enhancement. Considerable breeding efforts were made in finger millet and foxtail millet in India and China, respectively, proso millet in the United States of America, and teff in Ethiopia. So far, five genomes, namely foxtail millet, finger millet, proso millet, teff, and Japanese barnyard millet, have been sequenced, and genome of foxtail millet is the smallest (423-510 Mb) while the largest one is finger millet (1.5 Gb). Recent advances in phenotyping and genomics technologies, together with available germplasm diversity, could be utilized in small millets improvement. This review provides a comprehensive insight into the importance of small millets, the global status of their germplasm, diversity, promising germplasm resources, and breeding approaches (conventional and genomic approaches) to accelerate climate-resilient and nutrient-dense small millets for sustainable agriculture, environment, and healthy food systems.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


1995 ◽  
Vol 5 (1-2) ◽  
pp. 85-99 ◽  
Author(s):  
L. M. Dwyer ◽  
B. L. Ma ◽  
H. N. Hayhoe ◽  
J.L.B. Culley

1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiu-Xiu Chen ◽  
Wei Zhang ◽  
Xiao-Yuan Liang ◽  
Yu-Min Liu ◽  
Shi-Jie Xu ◽  
...  

Abstract Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha−1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg−1 tiller P concentration associated with 15 mg kg−1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg−1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 401
Author(s):  
Raghavendra Madar ◽  
Yudh Vir Singh ◽  
Mahesh Chand Meena ◽  
Tapas Kumar Das ◽  
Venkatesh Paramesh ◽  
...  

Understanding of the potassium (K) nutrient cycle and its microbial transformation of unavailable forms of soil K to plant-available K is crucial in any agroecosystem for strategic nutrient management through inorganic fertilizer, crop residue (CR), and microbial applications. Therefore, the present investigation was undertaken to study the effect of crop residue and K management practices on crop productivity, K mobilization from native soil K-pool, and crop assimilation of K under a zero-till maize–wheat cropping system. The experiment consisted of four residue levels (0, 2, 4, and 6 Mg ha−1) and five K levels (0, 50%, 100%, 150% RDK [recommended dose of K] and 50% RDK + potassium solubilizing bacteria, KSB). Results showed that CR retention at 6.0 Mg ha−1 significantly improved grain yield (of maize by 10.17%; wheat by 9.87%), dry matter accumulation, K uptake and redistribution in native soil K pools (water soluble K (WSK), exchangeable K (EK) and non-exchangeable K (NEK)) at 30 and 60 days after sowing and at harvest as compared to no CR. Among the K management, 50% RDK+KSB reported significantly higher grain yield (of maize by 26.22%; wheat by 24.70%), dry matter accumulation, K uptake, and native K pools (WSK, EK, and NEK) at different growth stages compared to no K. Total K did not differ significantly due to residue and K management. The highest actual change of K reported with 6.0 Mg ha−1 CR (51 kg ha−1) and 50% RDK+KSB (59 kg ha−1) over control. Significant (p ≤ 0.01) positive correlation was found among grain yield, dry matter accumulation, K uptake, the actual change in K and different native K pools. It can be concluded that retention of 6 Mg ha−1 CR and supply of 50% K through inorganic fertilizer along with seed inoculation of KSB biofertilizers, improved crop growth, productivity by enhancing K assimilation as a consequence of the release of non-exchangeable K and through the application of CR and K treatments under a zero tillage maize–wheat system.


Sign in / Sign up

Export Citation Format

Share Document