scholarly journals Energy Efficient Rule based intelligent routing using Fitness Functions in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) is a distributed collection of tiny wireless nodes which forms an ad hoc network dynamically to sense the natural phenomenon and sent it to the control station. Due to the resource constrained nature of WSN, maximizing the nodes life time is main and challenging issue. In this paper, Fitness Function based Routing Protocol (FFBRP) is proposed which provides the optimal routing to increase the life time of nodes in a network. The proposed protocol selects the fitness functions based on the important routing parameters like nodes energy consumption, nodes life time, packet Delivery ratio of nodes, distance between nodes, end to end delay of nodes and routing overhead of nodes. Based on the combination of selected fitness function parameters, the intelligent rules are generated and the optimal routes are discovered to perform energy efficient effective routing in WSN. By doing so, the proposed protocol provides better performance in terms of network life time and has better Quality of Service (QoS) than other existing techniques. The implementation of the proposed scheme is carried out using Network Simulator (NS2) with mannasim framework. Simulation results justifies that, proposed protocol outperforms the existing techniques and has better Packet Delivery Ratio, throughput , network life time, energy consumption, end to end delay and routing overhead .

2019 ◽  
Vol 01 (01) ◽  
pp. 12-23 ◽  
Author(s):  
Jennifer S. Raj ◽  
Abul Basar

The internet of things is a group of connected computing, digital and mechanical machines with the capability of being identified by other devices that are internet enabled. The wireless sensor networks is a gathering of sovereign sensing elements in combination with actuating, computing, communicating and energy storing devices to keep track of the continuous physical world changes. These clique of independent sensors that commune wirelessly incurring advantages such as low cost, limited power consumption, high scalability with adaptableness to hostile and harsh environments afford them to be connected with IOT to become a part of it, to trace the physical changes encountered in the things that are internet enabled. The conventional methods for connection establishment between WSNs with IOT are more energy consuming and prone to failures in terms of network life time, packet delivery ratio and delay. So the proposed methodology that uses the concatenation of clustering with neural and simple fuzzy rule based system supported by the shortest route determination to provide with an energy efficient and enhanced routing capabilities for IOT with WSNs ensures to have a route entrenchment with reduced power consumption and improvised QOS metrics. The performance analysis is done with regard to the packet delivery ratio, energy consumption, sensor network life time and delay to evidence it perfect functioning.


2021 ◽  
Author(s):  
POOJA MISHRA ◽  
NEETESH KUMAR ◽  
W WILFRED GODFREY

Abstract Software-Defined Networking (SDN) has been adopted as an emerging networking paradigm within Wireless Sensor Networks (WSNs). SDN enables WSNs with self-configuration and programmable control to dynamically and efficiently manage the network functionalities. Generally, in WSN, smart sensing devices suffer from the low battery issue and they may be deployed in such environments where frequent recharge is not possible after the deployment. Therefore, this work focuses on energy-efficient routing problem considering Software-Defined Wireless Sensor Networks (SD-WSN) architecture. In SD-WSN, Control Server (CS) assigns the tasks to selected Control Nodes (CNs) dynamically. Thus, the CNs' selection process is developed as one optimization (NP-Hard) problem to make the network functional. To solve this problem effectively, a nature-inspired algorithm i.e., Grey Wolf Optimization (GWO) is hybridized with Particle Swarm Optimization (PSO) in order to improve its convergence and overall performance. This hybrid variant of GWO is dedicated to offering a Balanced clustering (BC) based routing protocol, this variant is referred to as HGWO-BC. Further, to solve the problem effectively, a fitness function is designed that considers several parameters e.g., intracluster distance, CS to CNs distance, nodes' residual energy, and cluster size. Thus, the proposed approach performs balanced, energy-efficient, and scalable clustering and prolongs the network life-time. To verify its effectiveness, an exhaustive simulation study is done. Comparative results show that the HGWO-BC approach outperforms other state-of-the-art approaches concerning network life-time, residual energy, network throughput, and convergence rate.


2019 ◽  
Vol 9 (14) ◽  
pp. 2896 ◽  
Author(s):  
Md Arafat Habib ◽  
Sangman Moh

Wireless sensor networks (WSNs) have become an important and promising technology owing to their wide range of applications in disaster response, battle field surveillance, wildfire monitoring, radioactivity monitoring, etc. In WSNs, routing plays a significant role in delivery latency, energy consumption, and packet delivery ratio. Furthermore, as these applications are used in critical operations with limited irreplaceable batteries, routing protocols are required to be flawless as well as energy efficient. The dynamic environment also requires intelligent and adaptive routing. Game theory is widely used for designing routing protocols in WSNs to achieve not only reduced energy consumption but also increased packet delivery ratio. The core features of efficiently designed game theory-based routing protocols include optimal cluster head selection in hierarchical routing, energy-efficient and delay-aware route discovery, fault-tolerant data delivery, and coalition forming and grouping among nodes for stringent data transfer. In this paper, different routing protocols based on various types of games are extensively reviewed, which have been reported so far for improving energy consumption, delay, route establishment time, packet delivery ratio, and network lifetime. The different game theory-based routing protocols are qualitatively compared with each other in terms of major features, advantages, limitations, and key characteristics. For each protocol, possible applications and future improvements are summarized. Certain important open concerns and challenges are also discussed, along with future research directions.


2021 ◽  
Author(s):  
Asif Akbar

Directional antennas have numerous advantages over traditional omnidirectional antennas, which include more spatial reuse, extended range, less interference, and less energy consumption. Directional antennas introduce deafness and new hidden terminal problems. Deafness may cause more collisions, and hidden terminal problems may result in more retransmissions, poor quality of service, more energy consumption, and less packet delivery ratio. Hence, it is important to design of an effective medium access protocol specifically for directional antennas in order to reap the benefits of directional antennas while managing deafness and hidden terminal problems, otherwise the challenges can adversely affect system performance. In wireless sensor networks, the sensors are battery powered with limited supply of energy. Therefore, energy efficient protocols and solutions are immensely important with the desired goal of extending the network lifetime longer than what is possible through the omnidirectional antennas. In this thesis, I have proposed an energy efficient scheduled directional medium access control protocol (DTRAMA) which is specially designed for the wireless sensor nodes which use directional antennas in wireless sensor networks. It is a traffic adaptive scheduled medium access protocol in which nodes create their transmission and sleep schedules on the basis of their traffic. Scheduled medium access for packet transmission is used to address the deafness and hidden terminal problems caused by the use of directional communication in contention based MAC protocols. Use of directional antenna reduces interference which indirectly improves packet delivery ratio by improving the signal to noise ratio and by reducing the packet error rate. DTRAMA is energy efficient: firstly because the nodes use directional data communication which requires lower node transmit power than the omnidirectional data communication for the same transmission range; and secondly, because the nodes schedule their sleep period to reduce idle listening and overhearing which improves energy efficiency. In DTRAMA, sleep schedule of the node is traffic adaptive which is essential to maximize the sleep period. The node, by using spatial reuse checks, reuses the wireless medium to the maximum extent to reap the spatial reuse benefits of the directional antenna. The nodes reduce their packet latency through spatial reuse. Through simulation and by using different topologies, I have compared the performance of DTRAMA with those of omnidirectional schedule MAC protocol (TRAMA) and contention based directional MAC protocol (DMAC), which clearly shows that DTRAMA outperforms TRAMA and DMAC in packet delivery ratio and outperforms TRAMA in terms of packet latency.


2016 ◽  
Vol 92 ◽  
pp. 425-430 ◽  
Author(s):  
Veena Anand ◽  
Deepika Agrawal ◽  
Preety Tirkey ◽  
Sudhakar Pandey

2021 ◽  
Author(s):  
Asif Akbar

Directional antennas have numerous advantages over traditional omnidirectional antennas, which include more spatial reuse, extended range, less interference, and less energy consumption. Directional antennas introduce deafness and new hidden terminal problems. Deafness may cause more collisions, and hidden terminal problems may result in more retransmissions, poor quality of service, more energy consumption, and less packet delivery ratio. Hence, it is important to design of an effective medium access protocol specifically for directional antennas in order to reap the benefits of directional antennas while managing deafness and hidden terminal problems, otherwise the challenges can adversely affect system performance. In wireless sensor networks, the sensors are battery powered with limited supply of energy. Therefore, energy efficient protocols and solutions are immensely important with the desired goal of extending the network lifetime longer than what is possible through the omnidirectional antennas. In this thesis, I have proposed an energy efficient scheduled directional medium access control protocol (DTRAMA) which is specially designed for the wireless sensor nodes which use directional antennas in wireless sensor networks. It is a traffic adaptive scheduled medium access protocol in which nodes create their transmission and sleep schedules on the basis of their traffic. Scheduled medium access for packet transmission is used to address the deafness and hidden terminal problems caused by the use of directional communication in contention based MAC protocols. Use of directional antenna reduces interference which indirectly improves packet delivery ratio by improving the signal to noise ratio and by reducing the packet error rate. DTRAMA is energy efficient: firstly because the nodes use directional data communication which requires lower node transmit power than the omnidirectional data communication for the same transmission range; and secondly, because the nodes schedule their sleep period to reduce idle listening and overhearing which improves energy efficiency. In DTRAMA, sleep schedule of the node is traffic adaptive which is essential to maximize the sleep period. The node, by using spatial reuse checks, reuses the wireless medium to the maximum extent to reap the spatial reuse benefits of the directional antenna. The nodes reduce their packet latency through spatial reuse. Through simulation and by using different topologies, I have compared the performance of DTRAMA with those of omnidirectional schedule MAC protocol (TRAMA) and contention based directional MAC protocol (DMAC), which clearly shows that DTRAMA outperforms TRAMA and DMAC in packet delivery ratio and outperforms TRAMA in terms of packet latency.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


Sign in / Sign up

Export Citation Format

Share Document