scholarly journals QOS OPTIMIZATION OF ENERGY EFFICIENT ROUTING IN IOT WIRELESS SENSOR NETWORKS

2019 ◽  
Vol 01 (01) ◽  
pp. 12-23 ◽  
Author(s):  
Jennifer S. Raj ◽  
Abul Basar

The internet of things is a group of connected computing, digital and mechanical machines with the capability of being identified by other devices that are internet enabled. The wireless sensor networks is a gathering of sovereign sensing elements in combination with actuating, computing, communicating and energy storing devices to keep track of the continuous physical world changes. These clique of independent sensors that commune wirelessly incurring advantages such as low cost, limited power consumption, high scalability with adaptableness to hostile and harsh environments afford them to be connected with IOT to become a part of it, to trace the physical changes encountered in the things that are internet enabled. The conventional methods for connection establishment between WSNs with IOT are more energy consuming and prone to failures in terms of network life time, packet delivery ratio and delay. So the proposed methodology that uses the concatenation of clustering with neural and simple fuzzy rule based system supported by the shortest route determination to provide with an energy efficient and enhanced routing capabilities for IOT with WSNs ensures to have a route entrenchment with reduced power consumption and improvised QOS metrics. The performance analysis is done with regard to the packet delivery ratio, energy consumption, sensor network life time and delay to evidence it perfect functioning.

2019 ◽  
Vol 9 (14) ◽  
pp. 2896 ◽  
Author(s):  
Md Arafat Habib ◽  
Sangman Moh

Wireless sensor networks (WSNs) have become an important and promising technology owing to their wide range of applications in disaster response, battle field surveillance, wildfire monitoring, radioactivity monitoring, etc. In WSNs, routing plays a significant role in delivery latency, energy consumption, and packet delivery ratio. Furthermore, as these applications are used in critical operations with limited irreplaceable batteries, routing protocols are required to be flawless as well as energy efficient. The dynamic environment also requires intelligent and adaptive routing. Game theory is widely used for designing routing protocols in WSNs to achieve not only reduced energy consumption but also increased packet delivery ratio. The core features of efficiently designed game theory-based routing protocols include optimal cluster head selection in hierarchical routing, energy-efficient and delay-aware route discovery, fault-tolerant data delivery, and coalition forming and grouping among nodes for stringent data transfer. In this paper, different routing protocols based on various types of games are extensively reviewed, which have been reported so far for improving energy consumption, delay, route establishment time, packet delivery ratio, and network lifetime. The different game theory-based routing protocols are qualitatively compared with each other in terms of major features, advantages, limitations, and key characteristics. For each protocol, possible applications and future improvements are summarized. Certain important open concerns and challenges are also discussed, along with future research directions.


Wireless Sensor Networks (WSNs) is a distributed collection of tiny wireless nodes which forms an ad hoc network dynamically to sense the natural phenomenon and sent it to the control station. Due to the resource constrained nature of WSN, maximizing the nodes life time is main and challenging issue. In this paper, Fitness Function based Routing Protocol (FFBRP) is proposed which provides the optimal routing to increase the life time of nodes in a network. The proposed protocol selects the fitness functions based on the important routing parameters like nodes energy consumption, nodes life time, packet Delivery ratio of nodes, distance between nodes, end to end delay of nodes and routing overhead of nodes. Based on the combination of selected fitness function parameters, the intelligent rules are generated and the optimal routes are discovered to perform energy efficient effective routing in WSN. By doing so, the proposed protocol provides better performance in terms of network life time and has better Quality of Service (QoS) than other existing techniques. The implementation of the proposed scheme is carried out using Network Simulator (NS2) with mannasim framework. Simulation results justifies that, proposed protocol outperforms the existing techniques and has better Packet Delivery Ratio, throughput , network life time, energy consumption, end to end delay and routing overhead .


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


Author(s):  
Kavitha Ganesh ◽  
P. Latchoumy ◽  
A. Sonya

<span>Heterogeneous Wireless Sensor Networks (HWSN) gathers information from a cooperative network. In HWSN, the sensor nodes are scattered and the major challenges are topology control, battery optimization, packet loss and link lifetime. The existing techniques do not concentrate on all the mentioned issues. The objective of this work is to provide congestion-free data transfer with higher throughput and increased packet delivery ratio. In the proposed methodology, three protocols are designed and developed, namely, Hop by Hop Rate Adjustment Protocol (HHRA), Energy Efficient Data Transfer Protocol (EEDT) and Alternative Routing Congestion Control Protocol (ARCC). The HHRA protocol senses the traffic in the channel and adjusts the transmission rate accordingly to avoid congestion. Secondly, the EEDT protocol is used to find specific nodes that are more efficient and transfer packets through those nodes to improve throughput. The ARCC protocol is used to redirect the path of transmission during the occurrence of congestion. Thus, the proposed traffic contention and control mechanisms ensures congestion free transmission and increases the packet delivery ratio by 23% and average throughput by 20% compared to the Dynamic Contention Window based Congestion Control (DCWCC) algorithm. </span>


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4072 ◽  
Author(s):  
Sangdae Kim ◽  
Beom-Su Kim ◽  
Kyong Hoon Kim ◽  
Ki-Il Kim

To improve the packet delivery ratio in wireless sensor networks, many approaches such as multipath, opportunistic, and learning-based routing protocols have been proposed. However, the performance of the existing protocols are degraded under long-hop wireless sensor networks because the additional overhead is proportional to the number of hops. To deal with the overhead, we propose an opportunistic multipath routing that forecasts the required number of paths, as well as bifurcation based on opportunistic routing according to the reliability requirement. In the proposed scheme, an intermediate node is able to select a different node for each transmission and to handle path failure adaptively. Through a performance evaluation, we demonstrate that the proposed scheme achieves a higher packet delivery ratio and reduces the energy consumption by at least approximately 33% and up to approximately 65% compared with existing routing protocols, under the condition of an 80% link success ratio in the long-hop sensor network.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986220 ◽  
Author(s):  
Jaffar Ali ◽  
Javed Iqbal ◽  
Shabbir Majeed ◽  
Imran Ahmed Mughal ◽  
Awais Ahmad ◽  
...  

Due to the increased demand of wireless sensor networks for their characteristics like low energy consumption, robustness, and low cost in several demanding and complex applications like smart grid, health and safety, traffic and weather updates, there is need of monitoring the infrastructure in a timely manner with high reliability. In this article, a cross-layer data communication scheme target-aware cross-layer technique is proposed to enhance reliability and to reduce the latency in wireless sensor networks. The proposed scheme uses connected dominating set at network layer where nodes in the connected dominating set are directly connected to all the other nodes in the network. Each sensor node sends the data to the nodes present in the connected dominating set, which forwards it to their respective destinations. The proposed scheme reduces the chances of collision resulting reduced delays. Higher packet delivery ratio is achieved with the proposed scheme results in improved reliability. The proposed scheme is outperforming other state-of-the-art schemes in terms of packet delivery ratio, latency, and data throughput with the default 802.15.4 and delay-responsive cross layer in both static and mobile scenarios using network simulator tool.


Sign in / Sign up

Export Citation Format

Share Document