scholarly journals Design and Analysis of Inclined Belt Conveyor System for Coal Loading for Weight Reduction

Belt conveyor is used for the transportation of material from one location to another. Belt conveyor has high load carrying capacity, large length of conveying path, simple design, easy maintenance and high reliability of operation. This paper discuss about study of design procedure and analysis of inclined type belt conveyor system for coal loading application.1 The paper shows design calculations of conveyor, trajectory of the material on conveyor, power and belt design and stresses on pulley due to belt tensions at and slack and tight side. The results comprises of capacity, power calculations on pulley, stress analysis on pulley drive shaft, on components of belt conveyor and its effect. The Belt conveyor used for coal processing industry is considered to have a design capacity is 250 TPH and speed of the conveyor to be 115 ft. /min. Geometrical modelling has been done using Catia V5R20 and finite element analysis is done in Solid works 2018. This paper discusses the conveyor design and weight optimization. Material weight reduction is accomplished using ASHBY charts and ASME standards and finally weight optimisation and performance index has been discussed.

Author(s):  
S. S. Vanamane ◽  
P.A. Mane ◽  
K. H. Inamdar

Belt conveyor is the transportation of material from one location to another. Belt conveyor has high load carrying capacity, large length of conveying path, simple design, easy maintenance and high reliability of operation. Belt conveyor system is also used in material transport in foundry shop like supply and distribution of molding sand, molds and removal of waste. In this paper the study is carried out on DISA pattern moulding machine to meet the requirement of higher weight castings. The DISA machine is having the capacity of 100 moulds per hour. The mould size and density of material is given parameters. The present discussion aims to design the conveyor system used for cooling of mold, which includes speed, motor selection, belt specification, shaft diameter, pulley, idler spacing, gear box selection, with the help of standard practice and these results are verified with the belt comp software.


2011 ◽  
Vol 101-102 ◽  
pp. 755-758 ◽  
Author(s):  
Chun Sheng Yang

Belt conveyors are the major equipments for bulk material transportation.This paper analyses the static and dynamic behaviours of the belt, and establishes the dynamic elastic modulus. By analyzing the characteristics of the Kelvin and Maxwell viscoelastic model, the former is selected as the conveyor belt model as it can more realistically reflect the mechanical characteristics of the conveyor system. This paper introduces the development of the belt conveyor, and analyzes the current research situation at home and abroad.


2014 ◽  
Vol 1027 ◽  
pp. 315-319 ◽  
Author(s):  
Xing Qi Yuan ◽  
Shuang Yan Yang ◽  
Quan Yun Niu

With the fast development in continuous conveyor technology, the belt conveyor to be more widely applied, the belt conveyor technology is gradually refined, and has made a number of achievements. Drum as a belt conveyor drive components, attracted the attention of the relevant technical staff. To ensure the belt conveyor system, the optimizing design of the drum quality and the strengthen use of the drum performance have an important guiding significance to the safety and reliability as a whole. With the help of ANSYS software, finite element analysis, the optimal design results analysis showed that the effect of optimal design to achieve the purpose of has a certain guiding significance for optimizing the structure of actual production. Key words: Belt conveyor; drum; transmission parts; ANSYS; the optimization design


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2021 ◽  
Vol 1748 ◽  
pp. 062047
Author(s):  
Ming-Yuan Zhang ◽  
Hai-Dong Zhu ◽  
Wei Zhang

Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2011 ◽  
Vol 127 ◽  
pp. 295-299 ◽  
Author(s):  
Yong Cun Guo ◽  
Gang Cheng ◽  
Kun Hu ◽  
Zhu Fen Wang

Belt conveyor is widely used in mine, coal, chemical industry, ports, and power plants. It’s one of the significant devices of continuous conveyor. Roller is a crucial component with regard to belt conveyor system, which supports belts and cargos. In the design of the belt conveyor, a third of major consumption went into rollers. The critical consideration for minimum cost, which including operating, manufacturing, maintenance expenditure, is the selection of idler spacing. For optimization purposes, the optimum pitch between the rollers is regard as more decisive variable, especially for minimizing consumption and reducing rollers’ number than other various factors. This paper discusses the idler spacing to proceed from original technical first, secondly analyzes the effective factors in detail and then deduces rational arrangement mathematical expressions of idler spacing. Simultaneously, combining with the corresponding parameter, we draw up the hierarchical layout figure of idler spacing distribution through the calculation expression. It’s the optimal option of idler spacing that providing an outstanding reference in the actual production.


Sign in / Sign up

Export Citation Format

Share Document