scholarly journals Inelastic Behaviour of Braced Steel Framed Structure by Pushover Analysis

2020 ◽  
Vol 9 (1) ◽  
pp. 1876-1879

Now a days steel based structures are more conveniently used in comparison with RCC based structures thanks to its ductility behaviour. The ductility and energy dissipation capacity are important for a structure to resist seismic force. To boost the energy dissipation capacity of a steel framed structure, bracing were used. Here G+14 story building steel framed structure were selected for investigation. Thereon structures energy dissipation capacity were improved by introducing the X bracing, V bracing and zipper bracing. STAAD PRO and SAP2000 are employed for the analytical analysis. The relation between the performance of the different braced framed structure is made through pushover analysis. The criteria acclimatized with understanding the seismic efficiency of the casings are performance points, base shear capacity and roof displacement. The arrangement of the bracings on the edge structure has increased the base shear conveying limit, the performance point and reduced the displacement of the roof for all steel frames.

Author(s):  
Syed Shoaib ◽  
Syed Shoaib ◽  
Dr M L Waiker

During earthquake motion. The seismic behavior depends upon the strength, mass, and stiffness are distributed in both horizontal and vertical planes. the buildings structural damage was severe the frame is caused due to the discontinuity in the stiffness mass and strength between the alongside stories. The same type of discontinuity is vertical geometric irregularity which is due to the irregular building configuration in vertical plane so there is to know the seismic response of building modals in different structural irregularities. Non-linear static (pushover analysis) which is used for Investigation. The purpose of study doing nonlinear static (pushover analysis) by conventional design methodology G+12 High rise buildings this work shows seismic performance and behavior of building frame with and without vertical irregularity in terms of base shear, story shear, story displacement the performance point of all models are considered also found that irregularity in assessment of the structure decreases the performance level of building there is also reduces in deformation or displacement of the structure. all the models analyzed by using ETABS and design as per IS 456:200 and 1893:2016


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2942
Author(s):  
Yun Liu ◽  
Gonglian Chen ◽  
Zhipeng Wang ◽  
Zhen Chen ◽  
Yujia Gao ◽  
...  

Autoclaved aerated concrete (AAC) self-insulation block masonry is often used for the infill walls in steel and concrete frame structures. To work together with the frame under earthquake action, it is essential to understand the seismic behavior of AAC self-insulation block masonry walls. In this paper, six AAC self-insulation block masonry walls were experimentally studied under the pseudo static test. The load-displacement hysteretic curves were drawn with the test data. The failure characteristics, loading capacity, stiffness degeneration, energy dissipation capacity and hysteretic behavior are analyzed. The results indicate that the blocks underwent internal failure due to the lower strength with a larger size, but the walls had good energy dissipation capacity with a rational bearing capacity. Accompanied by the influence of vertical compressive stress on the top surface of the walls, the cracking resistance, ultimate bearing capacity, deformability and energy dissipation capacity of the walls were affected by the masonry mortar joints. Comparatively, the walls with thin-layer mortar joints had better seismic performance than those with insulation mortar joints or with vertical joints filled by mineral wool plates. Finally, the shear capacity of the walls under seismic load is evaluated referring to the formulas of current design codes for masonry walls.


2018 ◽  
Vol 4 (9) ◽  
pp. 2034 ◽  
Author(s):  
Mohammed Ismaeil

The infrastructure, existing in Sudan, is mostly not structured or designed to resist seismic forces accordingly. The study investigated the seismic damage of a 5 storey existing reinforced concrete building in Khartoum, Sudan. Three performance levels were considered in the study, which included immediate occupancy, life safety, and collapse prevention. The gravity push was carried out using force control method and lateral push with displacement control, using SAP2000. Pushover analysis produces push curve, consisting of capacity spectrum, demand spectrum, and performance point. It showed the performance level of building components along with maximum base shear carrying capacity. It has been observed that demand curve intersected the capacity curve between the points B and C at the X direction that is life safety level; and between the points B and C at the Y direction that is life safety and collapse prevention level. Therefore, some building elements are needed to be strengthened.


2018 ◽  
Vol 4 (2) ◽  
pp. 45
Author(s):  
Zinnur Çelik ◽  
Ahmet Budak

In the scope of this study, information has been provided on the Static Pushover Analysis which is a nonlinear deformation controlled analysis method and the Capacity Spectrum Method used to determine the performance point. In this study, static pushover analysis was made on a six-storey building with reinforcement concrete frame system by changing the materials, steel rebars and soil characteristics. The building’s capacity curves were drawn and decided according to different concrete and reinforcement groups. Furthermore the performance points of different classes of concrete were studied according to three seismic effect levels. In the case of a decrease in the reinforcement strength, a decrease of approximately 30% occurs in the base shear force. If the concrete strength is increased, an increase of 11% occurred in the base shear force. Consequently, in the comparisons made with five different concrete groups and two different reinforcement groups, rather than the increase in the strength of the concrete, an increase in the reinforcement strength was observed to be more effective on the structural capacity. Furthermore, local soil classifications were observed to be the most significant point regarding peak displacement.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liu Tingbin ◽  
Jia Rubo ◽  
Pei Xianke ◽  
Zhang Jiawei ◽  
Zhao Jianchang

Six brick masonry specimens (two unreinforced specimens, two reinforced specimens, and two specimens reinforced after being damaged), which have different aspect ratios, were tested under low-frequency cyclic loading. The seismic performances of these specimens, including failure characteristics, deformation capacity, carrying capacity, energy dissipation capacity, hysteresis characteristics, and stiffness degradation, were analyzed. The following results were obtained: the ductility of the damaged walls could be significantly improved after they were reinforced with embedded horizontal steel bars; the ultimate shear capacity of the damaged brick masonry walls with the aspect ratios of 1.8 and 0.5 was improved by 6.8% and 4.7%, respectively; the displacement corresponding to the ultimate bearing capacity was close to that of the unreinforced brick masonry wall; the hysteresis loop of the reinforced wall became plumper and encompassed a larger area; after the ultimate load was reached, a clear yielding platform appeared in the skeleton curve of the reinforced wall; the reinforced wall exhibited good ductility, after entering plastic stage; the energy dissipation capacity of the reinforced wall was significantly greater than that of the unreinforced wall. In conclusion, the seismic performance of the damaged brick masonry wall can be improved by embedding horizontal steel bars, and this reinforcing method can be applied in the postseismic reconstruction process.


2010 ◽  
Vol 37 (9) ◽  
pp. 1157-1170 ◽  
Author(s):  
Denis Mitchell ◽  
Patrick Paultre ◽  
René Tinawi ◽  
Murat Saatcioglu ◽  
Robert Tremblay ◽  
...  

The purpose of this paper is to provide a summary of the evolution of seismic design in Canada. This paper presents the significant changes to the approach taken in determining seismic hazards and seismic hazard maps, and describes the evolution of the seismic design provisions of the National building code of Canada. The introduction of important parameters in determining the seismic base shear such as the period of vibration of the structure, the influence of type of soil, and the concepts of ductility and energy dissipation capacity of elements and structures are presented. The levels of seismic design base shears, determined from different versions of the National Building Code of Canada, are compared for reinforced concrete frame and wall structures to illustrate the changes.


2018 ◽  
Vol 22 (5) ◽  
pp. 1035-1048
Author(s):  
Qiuwei Wang ◽  
Qingxuan Shi ◽  
Yi Tao

A new type of fired perforated brick with void ratio of more than 30% has been developed to improve the applicability of brick masonry structures. When the new perforated bricks are used for load-bearing walls, it will be a question whether the seismic performance of walls could satisfy the requirements under not obviously increasing the cost. This article presents an experimental study to investigate the seismic behavior and shear capacity of new-type perforated brick walls with high void ratio. For this purpose, six cross walls and three longitudinal walls with constructional columns under low reversed cyclic loading were tested, and the failure patterns, hysteretic characteristics, skeleton curves, energy dissipation capacity, ductility and reinforcement strain were observed. The test results indicate that (1) most new-type perforated brick wall specimens display shear failure, and hysteretic curves of cross walls are plump while there is some pinch phenomenon for longitudinal walls; (2) the specimens have considerable deformation and energy dissipation capacity, with displacement ductility factors of over 2.0; (3) the bearing capacity of walls increases but the ductility decreases with an increase of vertical compressive stress, and the bearing capacity and deformation all increase while considering the effect of horizontal reinforcement; and (4) the central brick wall and construction columns could resist shear force together before the peak load, while the shear force would be mainly born by construction columns at the later loading stage. Based on the test results, the constraint coefficient in current Chinese code was modified, and the calculation formula of shear capacity for cross walls was proposed. Comparison of calculated results with test data shows that the method will provide a way to predict the shear capacity of new-type fired perforated brick walls.


2011 ◽  
Vol 368-373 ◽  
pp. 3868-3872
Author(s):  
Jing Zhao ◽  
Chun Yan Ma ◽  
Chao Liu ◽  
Jie Chen

This paper selects a new building material—foam concrete which can be used by the outer wall system as a self-insulation material, and designs two sets of specimens which are carried out the experimental study under low-cycle reversed loading. The paper analyzes the failure mode of the walls, hysteretic curves, skeleton curves, ductility and energy-dissipation capacity. Experimental phenomena and results show: by reasonable construction measures, the new latticed energy-saving wall compared with the normal filling wall possesses better seismic capacity and shear capacity, meanwhile the ductility and energy dissipation capacity of the wall is good to meet the engineering requirements. On this basis, the force mechanism of the specimen is discussed, calculation formula of shearing capacity is put forward, and the calculation results meet well with the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jin-Ben Gu ◽  
Yi Tao ◽  
Ren Xin ◽  
Z. Yang ◽  
Qing-Xuan Shi

FRP composites have been used for strengthening RC and masonry structures for decades. However, the researches on repairing multistorey masonry structures using FRP grids were relative less. In the present paper, an experimental study on the seismic performance of multistorey masonry structure with openings repaired with CFRP grid is introduced. Specifically, a 1/3-scale three-floor masonry wall with window openings was tested under quasistatic action to simulate the seismic damages. The damaged masonry wall was then repaired by externally bonding CFRP grids to the areas where the cracks intensively occurred. The repaired masonry wall was retested under the same loading to investigate the seismic resistance and assess the recovery attributed from the CFRP grid repairing. The findings of this study showed that CFRP grid repairing could effectively postpone or even prevent the occurrence and development of cracking. The seismic resistance of the masonry, including shear capacity, energy dissipation capacity, deformability, stiffness degradation, and ductility, was restored. The application of CFRP grid may shift the failure mechanism of the multistorey masonry wall. The recommendation of repair scheme for the similar structures was also proposed in accordance with the findings of the present work.


2020 ◽  
Vol 24 (06) ◽  
pp. 1-21
Author(s):  
Husain K. Jarallah ◽  
◽  
D. K. Paul ◽  
Yogendra Singh ◽  
◽  
...  

The nonlinear pushover analysis was used to evaluate an existing 8-storey reinforced concrete framed hospital building under seismic force and presented in this manuscript. The ‘Guru Teg Bahadur Hospital' is one of the important hospitals at Delhi-India, it was selected for this research. The three-dimensional frame model was used to model the building with a fixed base. The beams and columns were modeled by using three-dimension line frame elements with the centre lines joined at nodes. Diagonal strut elements were used to model the brick masonry infills. The slabs were considered as rigid diaphragms. The plastic hinge rotation capacities as per Federal Emergency Management Agency 356 (FEMA 356) with Performance Levels were adopted in this study, considering the axial force-moment and shear force-moment interactions. The nonlinear pushover analysis of the selected building was done with infills and it was observed that the infills (due to their small number in the considered building) do not make any appreciable effect on the performance level, except their failure at an early stage. The Capacity Spectrum Method (CSM) and Displacement Coefficient Method (DCM) were used to estimate the performance point of the building. The values of various coefficients as per Federal Emergency Management Agency 440 (FEMA 440) were adopted. The DCM was observed to give slightly higher target displacements, as compared to CSM. It was observed in the nonlinear pushover analysis that the unreinforced masonry (URM) infills collapse before the performance point of the building for the Maximum Considered Earthquake (MCE). As the intervention inside the functioning hospital is extremely difficult, it was explored whether it is possible to safeguard the infills by stiffening the building by providing external buttresses. Two cases of retrofitting schemes with 1.2m wide and 3m wide buttresses in transverse direction were used and analysed. It was found that this is not a practicable approach, as the infills collapse even with 3m wide buttresses.


Sign in / Sign up

Export Citation Format

Share Document