scholarly journals Modified Key Generation in RSA Algorithm

2019 ◽  
Vol 8 (2) ◽  
pp. 5311-5315

RSA Algorithm is one of the widely used asymmetric cryptography. But with several conducts of the different studies, factorization attack based on the value of modulo ‘n’ and based on the public key, the value of the private key is vulnerable. With this, the study modified the RSA Algorithm based on modulo and the public key. The modulo transformed into a new value that produced a compound result in the factorization process. At the same time, the public key has been modified by choosing randomly from collected values and transformed to a different value making it a better-hidden private key. The two algorithms compared in terms of factorization, encryption and decryption, and speed. The modification of the RSA Algorithm based on modulo and public key produced a new two-tier scheme in terms of factorization, and encryption and decryption process. The new scheme in the result is resistant to factorization and has a new scheme of private key hiding.

2021 ◽  
Vol 5 (4) ◽  
pp. 768-773
Author(s):  
Aminudin ◽  
Ilyas Nuryasin

The RSA algorithm is one of the cryptographic algorithms with an asymmetric model where the algorithm has two keys, namely the public key and the private key. However, as time goes on, these algorithms are increasingly exposed to security holes and make this algorithm vulnerable to being hacked by people who do not have authority. The vulnerability stems from the algorithm's public keys (e and n). The strength of the RSA algorithm is based on the difficulty of factoring two prime numbers that are generated during the key generation process, if these values ​​can be known using certain methods, the public key and private key values ​​will be found. Therefore, there are many studies that improvise the RSA algorithm, one of which is the Dual Modulus RSA (DM-RSA) algorithm. The algorithm uses four prime numbers which produce 2 modulus and 4 keys (2 public keys and 2 private keys). From the results of the Kraitchik factorization test, it was found that the DM-RSA algorithm was proven to be more resistant up to 2 times or even more than the standard RSA algorithm. This is evidenced by the fact that the value of n is 24 bits, the RSA algorithm can last up to 63204 ms (1 minute 22 seconds) while the Dual Modulus RSA algorithm lasts up to 248494123 ms (142 minutes 47 seconds).  


Author(s):  
Sabitha S ◽  
Binitha V Nair

Cryptography is an essential and effective method for securing information’s and data. Several symmetric and asymmetric key cryptographic algorithms are used for securing the data. Symmetric key cryptography uses the same key for both encryption and decryption. Asymmetric Key Cryptography also known as public key cryptography uses two different keys – a public key and a private key. The public key is used for encryption and the private key is used for decryption. In this paper, certain asymmetric key algorithms such as RSA, Rabin, Diffie-Hellman, ElGamal and Elliptical curve cryptosystem, their security aspects and the processes involved in design and implementation of these algorithms are examined.


2020 ◽  
Vol 8 (2) ◽  
pp. 113-120
Author(s):  
Aminudin Aminudin ◽  
Gadhing Putra Aditya ◽  
Sofyan Arifianto

This study aims to analyze the performance and security of the RSA algorithm in combination with the key generation method of enhanced and secured RSA key generation scheme (ESRKGS). ESRKGS is an improvement of the RSA improvisation by adding four prime numbers in the property embedded in key generation. This method was applied to instant messaging using TCP sockets. The ESRKGS+RSA algorithm was designed using standard RSA development by modified the private and public key pairs. Thus, the modification was expected to make it more challenging to factorize a large number n into prime numbers. The ESRKGS+RSA method required 10.437 ms faster than the improvised RSA that uses the same four prime numbers in conducting key generation processes at 1024-bit prime number. It also applies to the encryption and decryption process. In the security testing using Fermat Factorization on a 32-bit key, no prime number factor was found. The test was processed for 15 hours until the test computer resource runs out.


Aadhaar database is the world's largest biometric database system. The security of Aadhaar database plays a major role. In order to secure such huge database, an encryption and decryption algorithm has been proposed in this paper. Elliptic Curve Cryptography (ECC) is a public key cryptography which is used to provide high security to those databases. The Aadhaar database contains individual personal information as well as their biometric identities. ECC is widely used for providing security to all kinds of data. ECC has smaller key size, fast computation, high throughput compared to other cryptographic algorithms. The data’s present in database are converted into their corresponding Pixel or ASCII values. After that the encryption process is done with the help of public key, private key, generation points and plain text. After the encryption process, the encrypted coordinates can be mapped with the generated points and from that corresponding ASCII value for text, pixel value for image can be retrieved. Then, the alphabet which is corresponding to ASCII will be displayed so that the cipher text can be viewed. This encrypted data is stored in the database. In order to retrieve the original data decryption process using ECC is carried out. In decryption process, receiver’s private key and cipher coordinates which is retrieved from encryption process are used. Therefore, the personal details of an individual can be retrieved with the presence of that particular person who only knows that private key. So, the hackers will not be able to retrieve the database of any individual just by knowing their Aadhaar ID. The proposed work is implemented in the MATLAB software. The Performance metrics like PSNR, Similarity, Correlation Coefficient, NPCR and UACI has been done for analysis.


2020 ◽  
Vol 8 (6) ◽  
pp. 2911-2918

Cryptography is the specialty of encoding and decoding messages and exists as extended as the individuals have doubted from one another and need secure correspondence. The traditional techniques for encryption naturally depend on any among public key or secret key approaches. In general, the public key encryption depends on two keys, for example, public key and private key. Since encryption and decryption keys are different, it isn't important to safely distribute a key. In this approach, the difficult of the numerical issues is assumed, not demonstrated. All the security will be easily compromised if proficient factoring algorithms are found. In secret key encryption two clients at first create secret key, which is a long string of arbitrarily selected bits and safely shares between them. At that point the clients can utilize the secret key along with the algorithms to encryption and decryption information. The procedures are complicated and also planned such a way that every bit of output is based on every bit of input. There are two fundamental issues with secret key encryption; first one is that by breaking down the openly known encoding algorithms, it gets simpler to decrypt the message. The subsequent one is that it experiences key-conveyance issue. As a result of the ongoing improvements in quantum processing and quantum data hypothesis, the quantum computers presents genuine difficulties to generally utilized current cryptographic strategy. The improvement of quantum cryptography beat the deficiencies of old style cryptography and achieves these huge accomplishments by using the properties of infinitesimal articles, for example, photon with its polarization and entangled state. In this paper, Polarization by refraction based quantum key distribution (PR-QKD) is proposed for quantum key generation and distribution. The proposed work considers three basis of polarization such as rectilinear (horizontal and vertical), circular (left-circular and right-circular), ellipse (left-ellipse and rightellipse) and refraction factor. This quantum key can be used for secure communication between two users who are spatially separated and also offer intrusion detection ability to detect attackers. The theoretical approach and conceptual results are discussed in this paper.


2018 ◽  
Author(s):  
Andysah Putera Utama Siahaan

An asymmetric algorithm is an encryption technique that uses different keys on the process of encryption and decryption. This algorithm uses two keys, public key, and private key. The public key is publicly distributed while the private key is kept confidentially by the user and this key is required at the time of the decryption process. RSA and ElGamal are two algorithms that implement a public key cryptosystem. The strength of this algorithm lies in the bit length used. The degree of difficulty in RSA lies in the factorization of large primes while in ElGamal lies in the calculation of discrete logarithms. After testing, it is proven that RSA performs a faster encryption process than ElGamal. However, ElGamal decryption process is faster than RSA. Both of these algorithms are cryptographic public-key algorithms but have functions in different ways. RSA is a deterministic algorithm while ElGamal is a probabilistic algorithm.


2015 ◽  
Vol 1 (3) ◽  
pp. 194
Author(s):  
Yudhi Andrian

Algoritma ElGamal merupakan algoritma dalam kriptografi yang termasuk dalam kategori algoritma asimetris. Keamanan algoritma ElGamal terletak pada kesulitan penghitungan logaritma diskret pada bilangan modulo prima yang besar sehingga upaya untuk menyelesaikan masalah logaritma ini menjadi sangat sukar. Algoritma ElGamal terdiri dari tiga proses, yaitu proses pembentukan kunci, proses enkripsi dan proses dekripsi. Proses pembentukan kunci kriptografi ElGamal terdiri dari pembentukan kunci privat dan pembentukan kunci public. Pada proses ini dibutuhkan sebuah bilangan prima aman yang digunakan sebagai dasar pembentuk kunci public sedangkan sembarang bilangan acak digunakan sebagai pembentuk kunci privat. Pada penelitian sebelumnya digunakan bilangan prima aman pada proses pembentukan kunci namun tidak dijelaskan alasan mengapa harus menggunakan bilangan prima aman tersebut. Penelitian ini mencoba membandingkan penggunaan bilangan prima aman dan bilangan prima tidak aman pada pembentukan kunci algoritma elgamal. Analisa dilakukan dengan mengenkripsi dan dekripsi sebuah file dengan memvariasikan nilai bilangan prima aman dan bilangan prima tidak aman yang digunakan untuk pembentukan kunci public dan kunci privat. Dari hasil analisa dapat disimpulkan bahwa dengan menggunakan bilangan prima aman maupun bilangan prima tidak aman, proses pembentukan kunci, enkripsi dan dekripsi tetap dapat berjalan dengan baik, semakin besar nilai bilangan prima yang digunakan, maka kapasitas cipherteks juga semakin besar.Elgamal algorithm is an algorithm in cryptography that is included in the category of asymmetric algorithms. The security of Elgamal algorithm lies in the difficulty in calculating the discrete logarithm on large number of prime modulo that attempts to solve this logarithm problem becomes very difficult. Elgamal algorithm is consists of three processes, that are the key generating, encryption and decryption process. Key generation of elgamal cryptography process is consisted of the formation of the private key and public key. In this process requires a secure prime number is used as the basis for forming public key while any random number used as forming of the private key. In the previous research is used secure prime number on key generating process but does not explain the reasons of using the secure primes. This research tried to compare using secure and unsecure primes in elgamal key generating algorithm. The analysis is done by encrypting and decrypting a file by varying the value of secure and unsecure of prime numbers that are used on generating of a public and a private key. From the analysis it can be concluded that using secure and unsecure of prime numbers, the process of key generating, encryption and decryption can run well, the greater value of prime numbers are used, the greater the capacity of the ciphertext.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yuza Reswan ◽  
Ujang Juhardi ◽  
Bobi Tri Yuliansyah

Data security is important in maintaining the confidentiality of certain data that can only be known by those who have rights. If the data transmission is done by using network, there is a big possibility the data to be known by unauthorized parties.The columnar transposition algorithm is one simple transposition password. Columnar transposition is one of the classic cryptographic algorithms. Columnar transposition is one part of the transposition cipher with cryptographic method where the message is written in a row from a specified length, and then the column per column is read again with a reading sequence based on a keyword. Series length is determined by the length of the keyword. The order of column readings is based on column order.RSA Algorithm is one of asymmetric cryptography, which is a type of cryptography that uses two different keys: public key and private key. Thus, there is one key, namely the public key, which can be sent through a free channel, without any particular security. In this case there are two keys arranged so that they have a relationship in modulo arithmetic equation. In this case, combining both columnar transposition algorithms and RSA algorithms allows security in the form of message data to be very effective for locking the data even better.Keywords: Cryptography, Columnar Transposition, RSA, Java


Kilat ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 91-99
Author(s):  
Yudi Wiharto ◽  
Ari Irawan

Cryptography is important in securing data and information. Confidential, important information may not be publicly or otherwise protected. It is not impossible for anyone to see, damage, steal or misuse important data from an agency or company through a computer network. The solution is with cryptography or a method of data security that can maintain the confidentiality and authenticity of a data or information. This method is intended for confidential information when sent through network access, such as LAN or internet, cannot be utilized by unauthorized parties. Cryptography supports the aspect of information security, namely protection of confidentiality. Therefore the need to maintain the confidentiality of data and information is a cryptographic application. The process in the form of encryption and decryption used by the user to secure the data without changing the contents of the data. This application has a 32-character key but in its use is made into 2 keys, namely public and private key where the public key is the key filled by the user in accordance with the desire, while the private key is the default key entered by the application at random to meet the length of 32 characters. The AES algorithm used is the AES256 algorithm where this algorithm uses the principle with the number of rounds by key.


In cryptography Public key cryptography plays a significant job in the field of data communication. Public key uses two distinctive keys where keys are related so those, the public key can use to encode the information and private key is utilized to decode. RSA is considered as one of the effective algorithm in public key cryptography. Effectiveness of RSA Algorithm for the most part relies upon how adequately public key segments is shared i.e. common modulus n and public key exponent e. If these components compromised by the hacker using mathematical attacks, acquiring private key becomes easier task for the intruder. This paper present an upgraded RSA algorithm which is used to avoid the limitations of Integer factorization attack by improving the complexity of factorization process by utilizing fake/phony public key exponent type f rather than e and phony modulus X rather than n. Paper also gives comparative analysis of the proposed work using standard metrics.


Sign in / Sign up

Export Citation Format

Share Document