scholarly journals Integrated Operation of Distributed Resources to Enhance Frequency Regulation in an Isolated Microgrid Environment

2019 ◽  
Vol 8 (3) ◽  
pp. 7479-7487

There is a growing concern to be self-sufficient and reduce the dependency on external power generating sources to satisfy the energy demands. Issues such as integrated operation of these power sources without having a dedicated storage system with enhanced frequency regulation is to be addressed. In this paper, the distributed generating sources like solar photovoltaic, diesel generator, fuel cells and electric vehicles are considered. Electric vehicle participation in the frequency regulation comes with constraints on state of charge of the battery and availability of the vehicle. An adaptive-additive algorithm is proposed for performing energy resource management and to maintain the frequency within the allowable band during transient and steady state system conditions. Load variation and EV-fleet availability variations are considered in the paper for understanding the system’s response to frequency changes by performing small-signal-analysis. The results show coordinated and satisfactory response of the system to maintain frequency regulation. Economic viability is also focused in the paper.

2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


2020 ◽  
Vol 10 (4) ◽  
pp. 1434 ◽  
Author(s):  
Justino Rodrigues ◽  
Carlos Moreira ◽  
João Peças Lopes

Smart Transformers (STs) are being envisioned as a key element for the controllability of distribution networks in a future context of Renewable Energy Source (RES), Energy Storage System (ESS) and Electric Vehicle (EV) massification. Additionally, STs enable the deployment of hybrid AC/DC networks, which offer important advantages in this context. In addition to offering further degrees of controllability, hybrid AC/DC networks are more suited to integrate DC resources such as DC loads, PV generation, ESS and EV chargers. The purpose of the work developed in this paper is to address the feasibility of exploiting STs to actively coordinate a fleet of resources existing in a hybrid AC/DC network supplied by the ST aiming to provide active power-frequency regulation services to the upstream AC grid. The feasibility of the ST to coordinate the resources available in the hybrid distribution AC/DC network in order to provide active power-frequency regulation services is demonstrated in this paper through computational simulation. It is demonstrated that the aforementioned goal can be achieved using droop-based controllers that can modulate controlled variables in the ST.


Power quality is a growing concern with sensible and critical loads asking for stringent frequency regulations. The distributed generation sources like Solar Photovoltaic, Diesel Generator, Fuel Cells, and Battery driven Electric Vehicles (BEV) are considered as power sources in the system. For the power-sharing among these generators, a central controller with a novel simple adaptive-additive control strategy is used. Each source has a local controller to regulate the power outputs. This paper presents a Neuro-Fuzzy controller for operating Solar Photovoltaic power at a Limited Power Point while a novel Neuro-Tuned-Fuzzy Controller decides which BEVs to be connected to the microgrid by giving a priority value to each BEV. The simulation results show the coordinated operation of the central and local controllers to regulate the power outputs of the sources was effective to manage reserves and achieve frequency regulation.


Author(s):  
Aysar M. Yasin ◽  
Mohammed F. Alsayed

<span>This work introduces a power management scheme based on the fuzzy logic controller (FLC) to manage the power flows in a small and local distributed generation system. The stand-alone microgrid (MG) includes wind and PV generators as main power sources. The backup system includes a battery storage system (BSS) and a diesel generator (DG) combined with a supercapacitor (SC). The different energy sources are interconnected through the DC bus. The MG is modeled using MATLAB/Simulink Sim_Power System™. The SC is used to compensate for the shortage of power during the start-up of the DG and to compensate for the limits on the charging/discharging current of the BSS. The power balance of the system is the chief objective of the proposed management scheme. Some performance indexes are evaluated: the frequency-deviation, the stability of the DC bus voltage, and the AC voltage total harmonic distortion. The performance of the planned scheme is assessed by two 24-hours simulation sets. Simulation results confirm the effectiveness of FLC-based management. Moreover, the effectiveness of the FLC approach is compared with the deterministic approach. FLC approach has saved 18.7% from the daily load over the deterministic approach. The study shows that the quality of the power signal in the case of FLC is better than the deterministic approach.</span>


Power expansions of network to disconnected areas are related with specialized and affordable issues. To examine the power Renewable Power Sources (RES) are used. In this paper, the design of RES based PV based wind generator is proposed. Here voltage source converter is used in the autonomous small scale applications. The both battery energy storage system and the diesel generator will produce the operation as fast as possible compared to other blocks. The main advantage of this system is control the system without any interpretations. AC source is obtained because of the proposed Distributed Generation set acts as an AC source. By utilizing fluffy rationale controller in this framework, to decrease the deviations in the waveforms. A wide assortment of matlab/simulink reproduction results is introduced to exhibit every one of the highlights of the proposed framework.


Author(s):  
Jiangfeng Wang ◽  
Man Wang ◽  
Zhequan Yan ◽  
Yiping Dai

Recently, BCHP systems as a kind of distributed energy resource present a great potential in improving energy efficiency and meeting multiple energy demands. Compared with traditional CCHP systems driven by fossil fuel, on-site renewable energy systems have more advantages in reducing carbon emissions. This paper proposes a new Building Cooling Heating Power system driven by solar energy with flat-plate solar collectors and R245fa as the working fluid. A thermal storage system is integrated into the system to store the collected solar energy and to supply heat when solar radiation is insufficient. By establishing the mathematical models of the proposed system we are able to conduct the numerical simulation of the system working in three typical operation modes around a whole year, namely the Combined Heating Power (CHP) mode in winter, the Combined Cooling Power (CCP) mode in summer, and the power production mode in spring or autumn. Results indicate that the system is able to operate continuously over a day, offering uninterrupted heating, cooling and power to building applications.


Author(s):  
Runar Unnthorsson ◽  
Halldor Palsson ◽  
Rikey Huld Magnusdottir

The pre-heating of engine coolant using electrical and fuel-based pre-heaters has been practiced for decades. There are many valid reasons for pre-heating engines such as increasing fuel economy, reducing pollution from combustion, reducing engine wear and increasing comfort. Those reasons are particularly true in colder climates where cars are used for short trips of up to 10 minutes or 5 kilometers. In this paper an unconventional approach for pre-heating engines before starting is studied. The pre-heating is accomplished by assuming storage of a certain amount of the engine’s hot coolant in an insulated storage system when not operating the vehicle, and pumping it back into the engine’s coolant system before restarting. The approach does not rely on external power sources, except for control and pumping of the coolant. The paper presents results from experimental tests made to evaluate the approach. The experimental tests were run with different settings. In one setting the system produced an average of 26 kW for fifty seconds (peaking at 41 kW). This power is considerably higher than the 2–6 kW provided by common commercial electrical and fuel-powered pre-heaters. Although 50 second pre-heating using the approach presented here will not match all commercial systems using 8–10 minutes heating time, the approach has room for improvement.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2773
Author(s):  
Petros Siritoglou ◽  
Giovanna Oriti ◽  
Douglas L. Van Bossuyt

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy-storage system to increase energy security for facilities with critical loads. The design method’s novelty complies with IEEE Standards 1562 and 1013, and addresses resilience, which is not taken into account in existing design methods. Several case studies simulated with a physics-based model validate the proposed design method and demonstrate how resilience can be included in the design process. Additionally, the design and the simulations were validated by 24 h laboratory experiments conducted on a microgrid assembled using commercial off-the-shelf components.


Sign in / Sign up

Export Citation Format

Share Document