scholarly journals Recognition, Classification for Normal, Contact and Cosmetic Iris Images using Deep Learning

2019 ◽  
Vol 8 (3) ◽  
pp. 4334-4340

The identification of the human being using iris based on image processing technique was one of better and older approach in human identification. Then to make human identification process an intelligent one using intelligent algorithms using machine learning techniques to train input images, extract features and classify the features based on classification techniques. The recent technology is enhancing for iris recognition based on deep learning networks, in which deeply train the images with number of layers, so that necessary features are extracted and then classify it and measure various parameters.

Machine learning techniques with high performance computing technologies can create various new opportunities in the agriculture domain. This paper does comprehensivereview of various papers which are concentrating on machine learning (ML) and deep learning application in agriculture. This paper is categorized into three sections a) Yield prediction using machine learning technique b) Price prediction c) Leaf disease detection using neural networks. In this paper we study the comparison of neural network models with existing models. The findings of this survey paper indicate Deep learning models give high accuracy and outperform traditional image processing technique and ML techniques outperforms various traditional techniques in prediction.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 168
Author(s):  
Khatri Chandni ◽  
Prof. Mrudang Pandya ◽  
Dr. Sunil Jardosh

In recent years, Machine Learning techniques that are based on Deep Learning networks that show a great promise in research          communities.Successful methods for deep learning involve Artificial Neural Networks and Machine Learning. Deep Learning solves severa  problems in bioinformatics. Protein Structure Prediction is one of the most important fields that can be solving using Deep Learning  approaches.These protein are categorized on basis of occurrence of amino acid patterns occur to extract the feature. In these paper aimed to review work based on protein structure prediction solve using Deep Learning Networks. Objective is to review motivate and facilitatethese deep learn the network for predicting protein sequences using Deep Learning. 


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 521 ◽  
Author(s):  
Alejandro Baldominos ◽  
Alejandro Cervantes ◽  
Yago Saez ◽  
Pedro Isasi

We have compared the performance of different machine learning techniques for human activity recognition. Experiments were made using a benchmark dataset where each subject wore a device in the pocket and another on the wrist. The dataset comprises thirteen activities, including physical activities, common postures, working activities and leisure activities. We apply a methodology known as the activity recognition chain, a sequence of steps involving preprocessing, segmentation, feature extraction and classification for traditional machine learning methods; we also tested convolutional deep learning networks that operate on raw data instead of using computed features. Results show that combination of two sensors does not necessarily result in an improved accuracy. We have determined that best results are obtained by the extremely randomized trees approach, operating on precomputed features and on data obtained from the wrist sensor. Deep learning architectures did not produce competitive results with the tested architecture.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Author(s):  
Lu Gao ◽  
Yao Yu ◽  
Yi Hao Ren ◽  
Pan Lu

Pavement maintenance and rehabilitation (M&R) records are important as they provide documentation that M&R treatment is being performed and completed appropriately. Moreover, the development of pavement performance models relies heavily on the quality of the condition data collected and on the M&R records. However, the history of pavement M&R activities is often missing or unavailable to highway agencies for many reasons. Without accurate M&R records, it is difficult to determine if a condition change between two consecutive inspections is the result of M&R intervention, deterioration, or measurement errors. In this paper, we employed deep-learning networks of a convolutional neural network (CNN) model, a long short-term memory (LSTM) model, and a CNN-LSTM combination model to automatically detect if an M&R treatment was applied to a pavement section during a given time period. Unlike conventional analysis methods so far followed, deep-learning techniques do not require any feature extraction. The maximum accuracy obtained for test data is 87.5% using CNN-LSTM.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2021 ◽  
pp. 1-55
Author(s):  
Emma A. H. Michie ◽  
Behzad Alaei ◽  
Alvar Braathen

Generating an accurate model of the subsurface for the purpose of assessing the feasibility of a CO2 storage site is crucial. In particular, how faults are interpreted is likely to influence the predicted capacity and integrity of the reservoir; whether this is through identifying high risk areas along the fault, where fluid is likely to flow across the fault, or by assessing the reactivation potential of the fault with increased pressure, causing fluid to flow up the fault. New technologies allow users to interpret faults effortlessly, and in much quicker time, utilizing methods such as Deep Learning. These Deep Learning techniques use knowledge from Neural Networks to allow end-users to compute areas where faults are likely to occur. Although these new technologies may be attractive due to reduced interpretation time, it is important to understand the inherent uncertainties in their ability to predict accurate fault geometries. Here, we compare Deep Learning fault interpretation versus manual fault interpretation, and can see distinct differences to those faults where significant ambiguity exists due to poor seismic resolution at the fault; we observe an increased irregularity when Deep Learning methods are used over conventional manual interpretation. This can result in significant differences between the resulting analyses, such as fault reactivation potential. Conversely, we observe that well-imaged faults show a close similarity between the resulting fault surfaces when both Deep Learning and manual fault interpretation methods are employed, and hence we also observe a close similarity between any attributes and fault analyses made.


Sign in / Sign up

Export Citation Format

Share Document