scholarly journals Xanthan Gum as Sustainable Biopolymer Additive for Soil Treatment

2019 ◽  
Vol 8 (4) ◽  
pp. 10487-10492

Ground improvement procedures give a solid common stage to development exercises and spare time for planning progressively safe structures which would not have been conceivable on powerless and extremely poor soils. Soil treatment in development building plans to improve the dirt properties, for example, total security, quality and disintegration opposition. Customary soil treatment materials have a few inadequacies, particularly from the natural perspective. In this way, there is a requirement for an appropriate eco-accommodating material to supplant the customary materials. In this examination, Xanthan gum is utilized as soil improvement material. Xanthan gum (XG) is a microbial exopolysaccharide created by the action of gramnegative bacterium Xanthitalics Campestris through maturing sucrose, glucose or other sources of sugar. This biopolymer is associated in the sustenance, restorative, pharmaceutical and petrochemical organizations and in various fragments as a thickener, stabilizer, or emulsifier and when united with various gums it can go about as gelling operator. At the point when added to soils, it frames cation connect between the particles, with fine particles it upgrades quality by means of hydrogen holding and goes about as a cementation folio between coarse particles. The fundamental precept of this study is to strengthen the soil by performing California bearing ratio test (CBR) and unconfinedcompression test (UCC) at varying percentages of Xanthangum.

2020 ◽  
Vol 11 (1) ◽  
pp. 170
Author(s):  
Amanda Mendonça ◽  
Paula V. Morais ◽  
Ana Cecília Pires ◽  
Ana Paula Chung ◽  
Paulo Venda Oliveira

Chemical stabilization of soils is one of the most used techniques to improve the properties of weak soils in order to allow their use in geotechnical works. Although several binders can be used for this purpose, Portland cement is still the most used binder (alone or combined with others) to stabilize soils. However, the use of Portland cement is associated with many environmental problems, so microbiological-based approaches have been explored to replace conventional methods of soil stabilization as sustainable alternatives. Thus, the use of biopolymers, produced by microorganisms, has emerged as a technical alternative for soil improvement, mainly due to soil pore-filling, which is called the bioclogging method. Many studies have been carried out in the last few years to investigate the suitability and efficiency of the soil–biopolymer interaction and consequent properties relevant to geotechnical engineering. This paper reviews some of the recent applications of the xanthan gum biopolymer to evaluate its viability and potential to improve soil properties. In fact, recent results have shown that the use of xanthan gum in soil treatment induces the partial filling of the soil voids and the generation of additional links between the soil particles, which decreases the permeability coefficient and increases the mechanical properties of the soil. Moreover, the biopolymer’s economic viability was also analyzed in comparison to cement, and studies have demonstrated that xanthan gum has a strong potential, both from a technical and economical point of view, to be applied as a soil treatment.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Stephan Schwander ◽  
Clement D. Okello ◽  
Juergen Freers ◽  
Judith C. Chow ◽  
John G. Watson ◽  
...  

Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5(fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m3in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%–55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health.


2014 ◽  
Vol 14 (5) ◽  
pp. 2233-2244 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
R. Talbot ◽  
H. Mao ◽  
X. Yang ◽  
...  

Abstract. A comprehensive measurement study of mercury wet deposition and size-fractionated particulate mercury (HgP) concurrent with meteorological variables was conducted from June 2011 to February 2012 to evaluate the characteristics of mercury deposition and particulate mercury in urban Nanjing, China. The volume-weighted mean (VWM) concentration of mercury in rainwater was 52.9 ng L−1 with a range of 46.3–63.6 ng L−1. The wet deposition per unit area was averaged 56.5 μg m−2 over 9 months, which was lower than that in most Chinese cities, but much higher than annual deposition in urban North America and Japan. The wet deposition flux exhibited obvious seasonal variation strongly linked with the amount of precipitation. Wet deposition in summer contributed more than 80% to the total amount. A part of contribution to wet deposition of mercury from anthropogenic sources was evidenced by the association between wet deposition and sulfates, as well as nitrates in rainwater. The ions correlated most significantly with mercury were formate, calcium, and potassium, which suggested that natural sources including vegetation and resuspended soil should be considered as an important factor to affect the wet deposition of mercury in Nanjing. The average HgP concentration was 1.10 ± 0.57 ng m−3. A distinct seasonal distribution of HgP concentrations was found to be higher in winter as a result of an increase in the PM10 concentration. Overall, more than half of the HgP existed in the particle size range less than 2.1 μm. The highest concentration of HgP in coarse particles was observed in summer, while HgP in fine particles dominated in fall and winter. The size distribution of averaged mercury content in particulates was bimodal, with two peaks in the bins of < 0.7 μm and 4.7–5.8 μm. Dry deposition per unit area of HgP was estimated to be 47.2 μg m−2 using meteorological conditions and a size-resolved particle dry deposition model. This was 16.5% less than mercury wet deposition. Compared to HgP in fine particles, HgP in coarse particles contributed more to the total dry deposition due to higher deposition velocities. Negative correlation between precipitation and the HgP concentration reflected the effect of scavenging of HgP by precipitation.


2021 ◽  
Vol 248 ◽  
pp. 01048
Author(s):  
Wenzhao Chen ◽  
Kai Yang ◽  
Jiaqing Fan ◽  
Xiqi Liu ◽  
Xiaoqing Wei

Sulfide minerals (mainly FeS2) contained in lead-zinc tailings are easy to be acidified in the air. The acidification mechanism is that the tailing sand generates sulfuric acid and sulfate under the catalysis of oxidant, water and oxygen. The acidic liquid generated by the reaction will continue to react with metal oxides to form an insoluble precipitate.In order to reveal the corresponding changes of chemical properties and physical properties of lead-zinc tailing sand during acidification, a series of reaction processes of tailings under natural conditions were simulated by immersion test in laboratory.It is found through the test that with the deepening of acidification, the coarse particles of tailing sand dissolve, resulting in the decrease of iron concentration in the compound, the increase of fine particles, the increase of specific surface area, the decrease of surface friction and occlusion friction between particles, resulting in the decrease of internal friction angle, and the decrease of the safety of tailings dam. words.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ulf Olofsson ◽  
Lars Olander ◽  
Anders Jansson

Recently, much attention has been paid to the influence of airborne particles in the atmosphere on human health. Sliding contacts are a significant source of airborne particles in urban environments. In this study airborne particles generated from a sliding steel-on-steel combination are studied using a pin-on-disk tribometer equipped with airborne-particle counting instrumentation. The instrumentation measured particles in size intervals from 0.01μm to 32μm. The result shows three particle size regimes with distinct number peaks: ultrafine particles with a size distribution peak around 0.08μm, fine particles with a peak around 0.35μm, and coarse particles with a peak around 2 or 4μm. Both the particle generation rate and the wear rate increase with increasing sliding velocity and contact pressure.


2005 ◽  
Vol 5 (10) ◽  
pp. 2739-2748 ◽  
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
A. M. de Frutos

Abstract. Samples of atmospheric aerosol particles were collected in Valladolid, Spain, during the winter of 2003-2004. The measurements were made with a Dekati PM10 cascade impactor with four size stages: greater than 10 µm, between 2.5 to 10 µm, 1 to 2.5 µm and less than 1 µm. The size and shape of the particles were analyzed with a scanning electron microscope (SEM) and elemental analysis was done with an energy dispersive x-ray analysis (EDX). We present an evaluation by size, shape and composition of the major particulate species in the Valladolid urban atmosphere. The total aerosol concentration is very variable, ranging from 39.86 µg·m-3 to 184.88 µg·m-3 with the coarse particles as the dominant mass fraction. Emphasis was given to fine particles (<1 µm), for which the visible (400 nm to 650 nm) light absorption coefficients were measured using the integrating plate technique. We have made some enhancements in the illumination system of this measurement system. The absorption coefficient, σa, is highly variable and ranges from 7.33×10-6 m-1 to 1.01×10-4 m-1 at a wavelength of 550 nm. There is an inverse power law relationship between σa and wavelength, with an average exponent of -0.8.


1993 ◽  
Vol 27 (10) ◽  
pp. 19-34 ◽  
Author(s):  
R. I. Mackie ◽  
R. Bai

The paper examines the importance of size distribution of the influent suspension on the performance of deep bed filters and its significance with regard to modelling. Experiments were carried out under a variety of conditions using suspensions which were identical in every respect apart from their size distribution. The results indicate that the presence of coarse particles does increase the removal of fine particles. Deposition of fine particles leads to a greater headloss than deposition of large particles. Changes in size distribution with time and depth play an important role in determining the behaviour of a filter, and models of both removal and headloss development must take account of this.


2009 ◽  
Vol 9 (11) ◽  
pp. 3523-3546 ◽  
Author(s):  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
K. G. Anlauf ◽  
P. S. K. Liu ◽  
D. Toom-Sauntry ◽  
...  

Abstract. Several cases of aerosol plumes resulting from trans-Pacific transport were observed between 2 km and 5.3 km at Whistler, BC from 22 April 2006 to 15 May 2006. The fine particle (<1 μm) chemical composition of most of the plumes was dominated by sulphate that ranged from 1–5 μg m−3 as measured with a Quadrapole Aerosol Mass Spectrometer (Q-AMS). Coarse particles (>1 μm) were enhanced in all sulphate plumes. Fine particle organic mass concentrations were relatively low in most plumes and were nominally anti-correlated with the increases in the number concentrations of coarse particles. The ion chemistry of coarse particles sampled at Whistler Peak was dominated by calcium, sodium, nitrate, sulphate and formate. Scanning transmission X-ray microscopy of coarse particles sampled from the NCAR C-130 aircraft relatively close to Whistler indicated carbonate, potassium and organic functional groups, in particular the carboxyl group. Asian plumes reaching Whistler, BC during the INTEX-B study were not only significantly reduced of fine particle organic material, but organic compounds were attached to coarse particles in significant quantities. Suspension of dust with deposited organic material and scavenging of organic materials by dust near anthropogenic sources are suggested, and if any secondary organic aerosol (SOA) was formed during transport from Asian source regions across the Pacific it was principally associated with the coarse particles. An average of profiles indicates that trans-Pacific transport between 2 and 5 km during this period increased ozone by about 10 ppbv and fine particle sulphate by 0.2–0.5 μg m−3. The mean sizes of the fine particles in the sulphate plumes were larger when dust particles were present and smaller when the fine particle organic mass concentration was larger and dust was absent. The coarse particles of dust act to accumulate sulphate, nitrate and organic material in larger particles, diminishing the role of these compounds in indirect radiative forcing, but potentially enhancing their roles in direct radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document