scholarly journals An Adaptive Routing in Flying Ad-Hoc Networks using FMCC Protocol

2020 ◽  
Vol 8 (5) ◽  
pp. 2473-2480

The increasing need for portable and flexible communication has paves a way for network evolution amongst unmanned aerial vehicles (UAVs) which is known as FANETs. Moreover, owing to its exclusive features of UAVs like frequency topology, high mobility and 3D movement makes routing most confronting task in FANETs. With these features, designing novel clustering model is quite complex. In general, topology based routing is determined as significant factor for resolving routing crisis. Henceforth, this investigation specifically spotlights on topology based routing protocol termed as Fuzzy based Markov chain Cluster (FMCC) with an objective of enhancing efficiency of networks in terms of resource utilization, time delay, transmission ratio and resource availability. Initially, consider a network model and the problems related in constructing a network without loss of packet transmission, neighbourhood construction and so on. In this work, simulation is done in NS-2 simulator and outcomes are analyzed based on end-to-end delay, throughput, cluster formation, cluster lifetime and so on. This method depicts better trade off in contrast to prevailing techniques. The information associated with the information exchange is considered for renovating the work effectually.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 449
Author(s):  
Sifat Rezwan ◽  
Wooyeol Choi

Flying ad-hoc networks (FANET) are one of the most important branches of wireless ad-hoc networks, consisting of multiple unmanned air vehicles (UAVs) performing assigned tasks and communicating with each other. Nowadays FANETs are being used for commercial and civilian applications such as handling traffic congestion, remote data collection, remote sensing, network relaying, and delivering products. However, there are some major challenges, such as adaptive routing protocols, flight trajectory selection, energy limitations, charging, and autonomous deployment that need to be addressed in FANETs. Several researchers have been working for the last few years to resolve these problems. The main obstacles are the high mobility and unpredictable changes in the topology of FANETs. Hence, many researchers have introduced reinforcement learning (RL) algorithms in FANETs to overcome these shortcomings. In this study, we comprehensively surveyed and qualitatively compared the applications of RL in different scenarios of FANETs such as routing protocol, flight trajectory selection, relaying, and charging. We also discuss open research issues that can provide researchers with clear and direct insights for further research.


Author(s):  
Sudesh Kumar ◽  
Abhishek Bansal ◽  
Ram Shringar Raw

Recently, the flying ad-hoc network (FANETs) is a popular networking technology used to create a wireless network through unmanned aerial vehicles (UAVs). In this network, the UAV nodes work as intermediate nodes that communicate with each other to transmit data packets over the network, in the absence of fixed an infrastructure. Due to high mobility degree of UAV nodes, network formation and deformation among the UAVs are very frequent. Therefore, effective routing is a more challenging issue in FANETs. This paper presents performance evaluations and comparisons of the popular topology-based routing protocol namely AODV and position-based routing protocol, namely LAR for high speed mobility as well as a verity of the density of UAV nodes in the FANETs environment through NS-2 simulator. The extensive simulation results have shown that LAR gives better performance than AODV significantly in terms of the packet delivery ratio, normalized routing overhead, end-to-end delay, and average throughput, which make it a more effective routing protocol for the highly dynamic nature of FANETs.


Author(s):  
Amina Bengag ◽  
Asmae Bengag ◽  
Mohamed Elboukhari

In the recent years, the study and developments of networks that do not depend on any pre-existing infrastructure have been very popular. Vehicular Ad Hoc Networks (VANETs) belong to the class of these networks, in which each vehicle participates in routing by transmitting data for other nodes (vehicles). Due to the characteristics of VANET (e.g. high dynamic topology, different communication environment, frequently link breakage…), the routing process still one of the most challenging aspects. Hence, many routing protocols have been suggested to overcome these challenges. Moreover, routing protocols based on the position of vehicles are the most popular and preferred class, thanks to its many advantages like the less control overhead and the scalability. However, this class suffer from some problems such as frequent link breakages caused by the high-mobility of vehicles, which cause a low PDR and throughput. In this investigation, we introduce a novel greedy forwarding strategy used to create a new routing protocol based on the position of vehicles, to reduce the link breakages and get a stable route that improves the PDR and throughput. The proposed Density and Velocity (Speed, Direction) Aware Greedy Perimeter Stateless Routing protocol (DVA-GPSR) is based on the suggested greedy forwarding technique that utilizes the density, the speed and the direction for selecting the most convenient relaying node candidate. The results of simulation prove that DVA-GPSR protocol outperforms the classical GPSR in all studied metrics like PDR, throughput, and the ratio of routing overhead by changing the quantity of vehicles in urban and highway scenarios.


Author(s):  
Anant Ram

Background: VANETs (Vehicular Ad-Hoc Networks) are the subclass of MANETs, which has recently emerged. Due to its swift changing topology and high mobility nature, it is challenging to design an efficient routing protocol for routing data amongst both moving vehicles and stationary units in VANETs. In addition, the performance of existing routing protocols is not effective due to high mobility characteristics of VANETs. Methods: In this paper, we proposed link reliable routing strategy that makes use of restricted greedy forwarding by considering neighborhood vehicles density and the least, average velocity with its own neighboring vehicles for the selection of next forwarder. Result: The proposed approach take the assumption that at every junction the police patrolling car (i.e. PCR junction node), which forwards the packet to vehicle onto correct road segment only. The link reliability is ensured by the mechanism for the selection of the next forwarder. Conclusion: The objective of this paper is to increase route reliability to provide increase throughput without greatly affecting end-to-end delay. The simulation results reveal that the proposed approach Reliable GPSR(R-GPSR) outperforms existing GPSR and E-GyTAR approach.


Author(s):  
Houacine Abdelkrim ◽  
Guezouri Mustapha

Vehicular ad-hoc networks (VANETs) is subclass of network of mobile ad-hoc network (MANET) type, it has emerged as a platform that supports inter-vehicles communication to improve road traffic safety. A conventional packet-based routing protocol where a packet moves from a source to a destination untouched throughout the entire process no longer satisfies the requirements in VANETs because of the high mobility of vehicles. This article proposes a routing protocol with an information-centric perspective for the VANETs, the techniques invoked are: Geocast instead of the classical multicast and the aggregation location-based. The simulation results under NS-3 and SUMO show that this protocol can help to limit the redundancy of the messages exchanged by their aggregation without maintaining a hierarchical structure; which minimizes transmission costs and ensures reliability and performance.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 59
Author(s):  
Dr T.Senthil Murugan ◽  
. .

Now-a-days wireless communication required for infrastructure less environment due to avoiding centralized data maintenance and fixed infrastructure data transmission because these types of network not supporting in emergency situation like natural disaster, Battle field and so on. But, Mobile Ad-Hoc networks (MANETs) are support the data communication in the above mentioned situations. In MANET, network implementation and maintenance has many emerging research areas like routing, Energy management, Quality of services, etc. Even many types of protocols are proposed and identified in this area but still it is more complex for identifying quality route. One of the most important factors for identifying quality route is “Mobility”. Many researchers are proposed protocols based on routing with random mobility. In this paper, we propose a new routing protocol “High Mobility Supports Routing Protocol (HMSRP)” which is supporting high mobility. Mobility has to be calculated using directional antennas. This proposed new protocol has supports to identify the location of the node, enhance the fast data transmission and control the fast communication.  Simulation results are shown our proposed protocol is produce good results over other protocol.


Author(s):  
Kirthana Akunuri ◽  
Ritesh Arora ◽  
Ivan G. Guardiola

The flexibility of movement for the wireless ad hoc devices, referred to as node mobility, introduces challenges such as dynamic topological changes, increased frequency of route disconnections and high packet loss rate in Mobile Ad hoc Wireless Network (MANET) routing. This research proposes a novel on-demand routing protocol, Speed-Aware Routing Protocol (SARP) to mitigate the effects of high node mobility by reducing the frequency of route disconnections in a MANET. SARP identifies a highly mobile node which forms an unstable link by predicting the link expiration time (LET) for a transmitter and receiver pair. NS2 was used to implement the SARP with ad hoc on-demand vector (AODV) as the underlying routing algorithm. Extensive simulations were then conducted using Random Waypoint Mobility model to analyze the performance of SARP. The results from these simulations demonstrated that SARP reduced the overall control traffic of the underlying protocol AODV significantly in situations of high mobility and dense networks; in addition, it showed only a marginal difference as compared to AODV, in all aspects of quality-of-service (QOS) in situations of low mobility and sparse networks.


Sign in / Sign up

Export Citation Format

Share Document