scholarly journals Solid Glass Microspheres Filled Aluminum Alloy Metal Matrix Composite Made Through Stir-Casting Technique

2020 ◽  
Vol 8 (5) ◽  
pp. 4471-4475

Solid Glass Microspheres (SGM) in the range of 10–20 vol. % were used as reinforcement for making aluminium alloy metal matrix composite having density 2.66–2.68 gm/cc using stir-casting technique. Aluminium alloys are not new for synthesizing Metal Matrix Composites (MMC’s), as they have already established their exceptional ability to sketch out the material for required properties where high strength is expected from a low density material. This has made them one of the widely used materials for aeronautics and marine applications where strength and weight are among the major governing factors for the suitability of any material. So, an effort is made to enhance the strength of aluminium alloy LM13 without affecting its lightness, by reinforcing it with Solid Glass Microspheres (SGM). This synthesized composite, is characterized in terms of its density and compressive deformation behaviour. It was observed that the developed composite behaves somewhat like a high strength aluminium foam under compressive deformation as exhibited in the stress–strain curves. The results of density evaluation and compression showed a substantial enhancement in the compressive strength of the developed composite with a considerably low change in density.

2017 ◽  
Vol 13 (3) ◽  
pp. 91-99 ◽  
Author(s):  
Hussain J. M Alalkawi ◽  
Aseel A. Hamdany ◽  
Abbas Ahmed Alasadi

Abstract      In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue life of 10wt% nanocomposite was found to be increased by 33.37% and 39.58% for low-high and high-low loading sequences, respectively, compared to the metal-matrix cumulative life. Keywords: Al2O3 nanoparticles, AA6061/10wt%, constant and cumulative fatigue, MMCs.


2015 ◽  
Vol 766-767 ◽  
pp. 252-256 ◽  
Author(s):  
A. Siddique Ahmed Ghias ◽  
B. Vijaya Ramnath

The composite material is a combination of two or more materials with different physical and chemical properties. The composite has superior characteristics than those individual components. A hybrid composite is the one which contains at least three materials. When the matrix material is a metal, the composite is termed as metal matrix composites (MMC). The MMC is a composite material with two constituent parts, one being a metal. The other material may be another metal, ceramic or fiber. Among all the MMC’s, Aluminium is the most widely used matrix material due to its light weight, high strength and hardness. This paper deals with the fabrication and mechanical investigation of hybrid metal matrix composite Al - SiC. The fabrication is done by stir casting by adding the required quantities of additives into the stirred molten Aluminium. The results show significant effect of mechanical properties such as tensile strength, yield stress and flexural strength. The internal structure of the composite is observed using Scanning electron microscope (SEM) and found that are formation of pores in them.


2016 ◽  
Vol 852 ◽  
pp. 98-103
Author(s):  
P.S. Samuel Ratna Kumar ◽  
S. John Alexis ◽  
D.S. Robinson Smart

The interest in Multiwall Carbon Nanotube (MWCNT) as reinforcement for Aluminium alloy has been growing considerably because of its significant properties such as high Strength, elastic modulus, flexibility and high aspect ratios which makes the combination for being used in aerospace, automobile and marine applications. This work mainly focuses on the theoretical analysis of Strength and Young’s modulus of MWCNT addition with Aluminium 5083 metal matrix composite for different compositions like 1, 1.25, 1.5 and 1.75 weight %, representing that the MWCNT are effective reinforcement. The predicted value shows that, the addition of MWCNT is increasing the Young’s modulus and Strength for the composite compared to the AA5083 (Aluminium alloy).


2018 ◽  
Vol 7 (3.12) ◽  
pp. 568
Author(s):  
Srinivasa. M.R ◽  
Y S Rammohan ◽  
Zahid Irfan

The application of Aluminium alloys becomes significant and most wide in the field of aviation industry. Aluminium 6061, because of its pro mechanical characteristics. Graphene is one of the allotropic forms of Carbon which is abundantly available in nature. The high tensile strength and low density of graphene is the added advantage as it is used as a reinforced material with Aluminium 6061.  Graphene was found to be a more suitable reinforcing material that improves tribological properties of metal. Composite materials are mixtures of various parent materials resulting in the formation of materials having a mix of varied desired properties like low weight, larger stiffness, higher specific strength etc. The composite materials so obtained invariably have superior properties to their parental ones. So these materials become a really enticing notice for higher strengthened material for industrial sector. This paper primarily focuses on distinctive effects of utilizing Graphene as reinforcement for Al-6061in the view of tribological characteristics. Graphene has outstanding mechanical and physical properties, creating it a perfect reinforcement material for lightweight weight and high strength metal matrix composites (MMC) like Al-6061. Fabrication, being a important step, because it controls the microstructure, that successively determines the properties of the material, was conducted by stir casting. Stir casting additionally helped within the dispersion of Graphene uniformly within the metal matrix composite. To analyze the effect of tribological parameters damage resistance of the metal matrix composite, linear reciprocating tribometer was used.  


Author(s):  
Madan Kumar K.N. ◽  
G. M. Satyanarayana

Aluminium based composite are getting a vast scope nowadays because of its properties and availability. In the present work, fly ash and AL2O3 reinforced composite are prepared using stir casting technique for varying wt.% (fly ash 3% and AL2O3 3%, 6% & 9%). Hardness and tensile properties were determined, with the addition of reinforcement the properties are improved compared to the parent metal alone. Based on the evaluation 6% AL2O3 and 3%fly ash gives a better result as compared to other composition.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajat Yadav ◽  
Shashi Prakash Dwivedi ◽  
Vijay Kumar Dwivedi ◽  
Anas Islam

Purpose This study aims to attempt to make an aluminum-based composite using reinforcement such as graphite and fly ash. Pollution is an enhanced serious issue of concern for global. Industries play a major role in disturbing the balance of the environment system. Composite is made by using the stir casting technique. The waste that is generated by the industries if left untreated or left to be rotten at some place may prove fatal to invite various types of diseases. Proper treatment of these wastes is the need of the hour, the best way to get rid of such kinds of hazardous wastes is to use them by recycling. Design/methodology/approach Stir casting technique was used to make a composite. Graphite and fly ash were mixed with equal amounts of 2.5% to 15% in aluminum. The microstructure of composite formed after composite was noticed. After seeing the microstructure it was understood that reinforcement particles are very well-mixed in aluminum. Findings When graphite was mixed with 3.75% and 3.75% fly ash in aluminum, the strength of the composite came to about 171.12 MPa. As a result, the strength of the composite increased by about 16.10% with respect to the base material. In the same way, when 3.75% graphite and 3.75% fly ash were added to aluminum, the hardness of the composite increased by about 26.60%. Originality/value In this work, graphite and fly ash have been used to develop green metal matrix composite to support the green revolution as promoted/suggested by United Nations, thus reducing the environmental pollution. The addition of graphite and fly ash to aluminum reduced toughness. The thermal expansion of the composite has also been observed to know whether the composite made is worth using in higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document