scholarly journals IoT Based Smart Irrigation Monitoring & Controlling System in Agriculture

2020 ◽  
Vol 8 (6) ◽  
pp. 2436-2440

This work is primarily about the improvement of current agricultural practices by using modern technologies for betterment of agriculture and modernization the traditional agriculture system. Internet of Things(IoT) plays a crowning role in smart agriculture. The project will help root level farmers to get into smart irrigation in term of agriculture. Which provide greater service in less cost in irrigation and lowest man power. Smart irrigation is an empirical concept because IoT sensors capable of providing information about their agriculture fields and making irrigation automated by Internet of Things. The feature of this paper includes monitoring temperature, humidity, pH and water level in agricultural field through sensors. The data from sensors are sent to Web server database using wireless transmission. Controlling of all these operations will be through any remote smart device or computer connected to internet and rain condition is also applied to the operations. It will be performed by interfacing sensors, IFTT app, Smart agriculture app, Wi-Fi and raspberry pi.

2021 ◽  
Author(s):  
O. Vishali Priya ◽  
R. Sudha

In today’s world, technology is constantly evolving; various instruments and techniques are available in the agricultural field. And within the agrarian division, the IoT preferences are Knowledge processing. With the help of introduced sensors, all information can be gathered. The reduction of risks, the mechanization of industry, the enhancement of production, the inspection of livestock, the monitoring of environment conditions, the roboticization of greenhouses, and crop monitoring Nearly every sector, like smart agriculture, has been modified by Internet-of-Things (IoT)-based technology, which has shifted the industry from factual to quantitative approaches. The ideas help to link real devices that are equipped with sensors, actuators, and computing power, allowing them to collaborate on a task while staying connected to the Internet, dubbed the “Internet of Things” (IoT). According to the World Telecommunication Union’s Worldwide Guidelines Operation, the Internet of Things (IoT) is a set of sensors, computers, software, and other devices that are connected to the Internet. The paper is highly susceptible to the consequences of its smart agriculture breakthrough.


Author(s):  
Zuraida Muhammad ◽  
Muhammad Azri Asyraf Mohd Hafez ◽  
Nor Adni Mat Leh ◽  
Zakiah Mohd Yusoff ◽  
Shabinar Abd Hamid

2021 ◽  
Vol 21 (3) ◽  
pp. 1-20
Author(s):  
Liang Tan ◽  
Na Shi ◽  
Keping Yu ◽  
Moayad Aloqaily ◽  
Yaser Jararweh

Green Internet of things (GIoT) generally refers to a new generation of Internet of things design concept. It can save energy and reduce emissions, reduce environmental pollution, waste of resources, and harm to human body and environment, in which green smart device (GSD) is a basic unit of GIoT for saving energy. With the access of a large number of heterogeneous bottom-layer GSDs in GIoT, user access and control of GSDs have become more and more complicated. Since there is no unified GSD management system, users need to operate different GIoT applications and access different GIoT cloud platforms when accessing and controlling these heterogeneous GSDs. This fragmented GSD management model not only increases the complexity of user access and control for heterogeneous GSDs, but also reduces the scalability of GSDs applications. To address this issue, this article presents a blockchain-empowered general GSD access control framework, which provides users with a unified GSD management platform. First, based on the World Wide Web Consortium (W3C) decentralized identifiers (DIDs) standard, users and GSD are issued visual identity ( VID ). Then, we extended the GSD-DIDs protocol to authenticate devices and users. Finally, based on the characteristics of decentralization and non-tampering of blockchain, a unified access control system for GSD was designed, including the registration, granting, and revoking of access rights. We implement and test on the Raspberry Pi device and the FISCO-BCOS alliance chain. The experimental results prove that the framework provides a unified and feasible way for users to achieve decentralized, lightweight, and fine-grained access control of GSDs. The solution reduces the complexity of accessing and controlling GSDs, enhances the scalability of GSD applications, as well as guarantees the credibility and immutability of permission data and identity data during access.


2020 ◽  
Vol 41 (03) ◽  
Author(s):  
A. Narmilan ◽  
N. Puvanitha

The widespread of Information and Communication Technology (ICT) in the past decades brought numerous advantages to many individuals and most of the organizations everywhere in the world. In the 21st century, the most significant technology is the Internet of Things (IoTs) which has developed rapidly covering most of applications in the health, civil, military and agriculture sectors also. Precision Agriculture (PA), as the combination of information, communication and control technologies in agronomic practices, is emerging time by time. Also, precision agriculture is considered a smart farming system on the basis of modern technologies to regulate, examine and manage changes inside an agricultural field for cost-effectiveness, sustainability and optimal protection of environment. Meanwhile, agricultural practices are contributing to environmental pollution due to poor management which is further disturbing food security, health and climate. One of the best strategies to overcome this challenge can be introducing the deployment of precision technologies for the development of agricultural productivity while reducing the environmental degradation. Therefore, the key objective of this review was to discuss the mitigation techniques for agricultural pollution and enhance the agricultural production by smart technologies like IoTs. This paper summarizes the main categories of IoTs, Precision Agriculture, agricultural pollution and finally, mitigation practices on environmental degradation.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 127
Author(s):  
Amjad Rehman ◽  
Tanzila Saba ◽  
Muhammad Kashif ◽  
Suliman Mohamed Fati ◽  
Saeed Ali Bahaj ◽  
...  

With the rise of new technologies, such as the Internet of Things, raising the productivity of agricultural and farming activities is critical to improving yields and cost-effectiveness. IoT, in particular, can improve the efficiency of agriculture and farming processes by eliminating human intervention through automation. The fast rise of Internet of Things (IoT)-based tools has changed nearly all life sectors, including business, agriculture, surveillance, etc. These radical developments are upending traditional agricultural practices and presenting new options in the face of various obstacles. IoT aids in collecting data that is useful in the farming sector, such as changes in climatic conditions, soil fertility, amount of water required for crops, irrigation, insect and pest detection, bug location disruption of creatures to the sphere, and horticulture. IoT enables farmers to effectively use technology to monitor their forms remotely round the clock. Several sensors, including distributed WSNs (wireless sensor networks), are utilized for agricultural inspection and control, which is very important due to their exact output and utilization. In addition, cameras are utilized to keep an eye on the field from afar. The goal of this research is to evaluate smart agriculture using IoT approaches in depth. The paper demonstrates IoT applications, benefits, current obstacles, and potential solutions in smart agriculture. This smart agricultural system aims to find existing techniques that may be used to boost crop yield and save time, such as water, pesticides, irrigation, crop, and fertilizer management.


2019 ◽  
Vol 9 (01) ◽  
pp. 47-54
Author(s):  
Rabbai San Arif ◽  
Yuli Fitrisia ◽  
Agus Urip Ari Wibowo

Voice over Internet Protocol (VoIP) is a telecommunications technology that is able to pass the communication service in Internet Protocol networks so as to allow communicating between users in an IP network. However VoIP technology still has weakness in the Quality of Service (QoS). VOPI weaknesses is affected by the selection of the physical servers used. In this research, VoIP is configured on Linux operating system with Asterisk as VoIP application server and integrated on a Raspberry Pi by using wired and wireless network as the transmission medium. Because of depletion of IPv4 capacity that can be used on the network, it needs to be applied to VoIP system using the IPv6 network protocol with supports devices. The test results by using a wired transmission medium that has obtained are the average delay is 117.851 ms, jitter is 5.796 ms, packet loss is 0.38%, throughput is 962.861 kbps, 8.33% of CPU usage and 59.33% of memory usage. The analysis shows that the wired transmission media is better than the wireless transmission media and wireless-wired.


2021 ◽  
Vol 1125 (1) ◽  
pp. 012073
Author(s):  
Haryanto ◽  
L Anifah ◽  
D Rahmawati ◽  
A K Sahputra ◽  
D T Laksono

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Sign in / Sign up

Export Citation Format

Share Document