scholarly journals Determination of Residual Shear Strength from Reversal Direct Shear test: Analysis and Recommendation

2020 ◽  
Vol 8 (5) ◽  
pp. 5053-5058

Reversal Direct Shear test is used for the determination of residual shear strength of soil sample. This test was conducted on undisturbed and remolded sample of embankment slope of Pa Bon Dam, Thailand that had failed after operating for 10 years. The undisturbed sample was taken from the downstream slope (non-failure zone) while the remolded sample was taken from the upstream slope (failure zone). The results yielded identical values of residual strength parameters. On the basis of laboratory test, various recommendations are proposed for the conduction of this test in future.

1996 ◽  
Vol 33 (2) ◽  
pp. 272-280 ◽  
Author(s):  
S Y Oloo ◽  
D G Fredlund

The unsaturated shear strength parameter, ϕb, is usually determined using triaxial of direct shear apparatus that have been modified to allow for the control and (or) measurement of pore-air and pore-water pressures. A fairly high level of expertise is required for the characterization of ϕb using these modified apparatus. A simple procedure for determining ϕb for statically compacted soils at different water contents is presented along with a method of analysis. The tests can be performed on a conventional direct shear apparatus. The unsaturated shear strength parameter, ϕb, obtained using the proposed procedure is shown to be comparable to that obtained using the modified direct shear test. Since the proposed procedure utilizes standard laboratory direct shear equipment and takes a relatively short time to complete, it offers an easy and convenient alternative for the determination of ϕb for statically compacted soils. Key words: shear strength, matric suction, unsaturated soils, statically compacted soils, direct shear test.


2021 ◽  
Vol 5 (2) ◽  
pp. 125
Author(s):  
Mohammad Afrazi ◽  
Mahmoud Yazdani

Many geotechnical problems require the determination of soil engineering properties such as shear strength. Therefore, the determination of the reliable values for this parameter is essential. For this purpose, the direct shear test, as one of the oldest tests to examine the shear strength of soils, is the most common way in laboratories to determine the shear parameters of soil. There are far too many variables that influence the results of a direct shear test. In this paper, a series of 10 × 10 cm direct shear tests were carried out on four different poorly graded sands with different particle size distributions to determine their shear behaviors. Four different poorly graded sands with a different median diameter or medium value of particle size distribution (D50) (0.2, 0.53, 1.3, and 2.3 mm) has been selected, and about 40 direct shear tests were conducted. It was concluded that a soil’s friction angle is affected by coarse-grained material. Accordingly, sandy soils with bigger particle sizes record a higher friction angle than soils containing small particles. The investigations also showed that sand with bigger particle sizes has a higher dilation angle. In addition, a non-linear regression analysis was performed to establish the exact relationship between the friction angle of the soil and the characteristics of the soil particles. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2011 ◽  
Vol 122 (3-4) ◽  
pp. 272-280 ◽  
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2013 ◽  
Vol 353-356 ◽  
pp. 735-739
Author(s):  
Xiao Ming Zhang ◽  
Shu Wen Ding ◽  
Shuang Xi Li

Development of slope disintegration is close to soil mechanic characteristics such as shear strength indices. Soil grain diameter and water content were tested. Soil direct shear test was conducted to analyze the relationship between shear strength indices and the influencing factors. The experimental data indicate that clay content and the range affect soil cohesion value and the scope. Soil cohesion increases with bulk density before 1.6g/cm3. But it decreases when the bulk after that. The results could provide a scientific basis for control of slope disintegration.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Nurul Priyantari ◽  
Supriyadi . ◽  
Devi Putri Sulistiani ◽  
Winda Aprita Mayasari

2D geoelectrical resitivity measurement and direct shear test has been conducted to determine soil type and soil strength on land settlement Istana Tidar Regency housing, Jember. Resistivity measurement is conducted at two line that have latitude 08.10’102” – 08.10’108” S, 113.43’404” – 113.43’408” E (line 1) dan 08.10’102” – 08.10’108” S, 113.43’410” – 113.43’414” E (line 2). Soil specimen were taken at 3 point, 2 point at line 1 and 1 point at line 2. Based on result of 2D geoelectrical resistivity measurement and direct shear test, this location was dominated by clay, silt and sandy silt are included in the type of cohesive soils. Soil strength of this type is capable to support light bulding contruction one or two floors.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Sign in / Sign up

Export Citation Format

Share Document