A Preliminary Legal Study Searching for a Research Methodology for Regulation of Emerging Technologies : Examination of 7 Building Blocks of Technological Regulation

2017 ◽  
Vol 49 ◽  
pp. 103-128
Author(s):  
Hye-Sun Yoon
2019 ◽  
pp. 513-550
Author(s):  
Lawrence M. Friedman

This chapter discusses the development of commerce, labor, and tax laws in the second half of the nineteenth century. It covers contracts, negotiable instruments, the law of sales, usury laws, insurance, bankruptcy, admiralty, labor and law, federal taxation, state and local tax, and death taxes. The law of contract occupies a special place in American law in the nineteenth century. The dominance of contract was one of the sovereign notions of the nineteenth century. By constitutional mandate, no state could “impair” the obligation of contracts. Contract law was also one of the basic building blocks of legal study.


Author(s):  
Florica Tomos ◽  
Saraswathy Thurairaj

Women entrepreneurs have an essential role for the economic growth of a country. Furthermore, ICTs and new emerging technologies facilitate the increase in number of women entrepreneurs who access education, training, and start their businesses from home. The purpose of this chapter is to investigate the impact of new emerging technologies and ICTs on women entrepreneurs' success through an empirical study conducted in SE Wales and by means of the literature review in Malaysia. Furthermore, the chapter attempts to find out women entrepreneurs' styles and methods of learning with new emerging technologies and ICTs in the SE Wales and Malaysia. The research methodology used in this study is mixed methodology.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 131 ◽  
Author(s):  
Víctor Gayoso Martínez ◽  
Luis Hernández-Álvarez ◽  
Luis Hernández Encinas

Blockchain is one of the most interesting emerging technologies nowadays, with applications ranging from cryptocurrencies to smart contracts. This paper presents a review of the cryptographic tools necessary to understand the fundamentals of this technology and the foundations of its security. Among other elements, hash functions, digital signatures, elliptic curves, and Merkle trees are reviewed in the scope of their usage as building blocks of this technology.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document