MODELS TO PREDICT SLOPE LENGTH FROM OTHER WATERSHED ATTRIBUTES

2020 ◽  
Vol 51 (4) ◽  
pp. 1025-1037
Author(s):  
Mohammed & Karim

Soil erosion by water is an extensive and increasing problem worldwide. Albeit, this problem has been recognized as a significant hazard in Iraq, yet the number of studies on this topic is very limited. Most of the models used for estimating soil erosion contain parameters for slope length factor (LS). A major constraint is the difficulty in extracting the LS factor. Accordingly, the current study was initiated with the main objective of deriving models to predict the slope length from relatively easy to measure basin characteristics with a reasonable accuracy. To achieve the above objective, standard methodologies were employed to describe 30 main basins with the upper part of Iraq in terms linear, areal and relief morphometric parameters. The majority of the delineated watersheds were characterized by having high slope lengths indicating lower drainage density and higher erosion rate. Linear and non-linear least squares techniques were applied to predict the slope length from other basin characteristics. Different indicators were used to test the performance of the proposed models and the approach was validated using K-fold procedure at independent basins. The results indicated that the 4-parameter regression model outperformed the remaining models of watershed slope length. The regressors of this model are bifurcation ratio, perimeter, and basin length and slope gradient.

2021 ◽  
Author(s):  
Antonio Saa-Requejo ◽  
Pablo Sevilla ◽  
Ana María Tarquis ◽  
Anne Gobin

<p>Soil erosion is an important process of consideration in different erosion risk models and in planning soil conservation. Common erosion models, such as the USLE and its derivatives are widely used. In this context, the slope length is the variable with the most difficulties due to the different scales and procedures available that lead to very different results. Furthermore, many of the calculation procedures are based on a hydrological network definition that poses many problems in areas with a complex topography.</p><p>We propose an algorithm implemented in GIS, returning to the original field perspective form defined by the USLE and RUSLE, which is detached from the hydrological network definition. The calculation procedure is based on 5 m DEM and defines overland water flow at the field scale.</p><p>This method has been applied in three areas with different climate and geomorphology. The results are similar to those derived from aerial photograph observation.</p><p><strong>References</strong></p><p>Honghu Liu, Jens Kiesel, Georg Hörmann, Nicola Fohrer. (2011). Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes. Catena, 87, 368–375</p><p>Renard, K.G., Foster, G.R., Weesies, G.A., Mc. Cool, D.K y Yoder, D.C. (1997). Predicting Soil Erosion by Water: A Guide To Conservation Planning With The Revised Universal Soil Los Equation. Agricultural Handbook 703. USA: US Department of Agriculture.</p><p><strong>Acknowledgements</strong></p><p>Authors are grateful to Authors are grateful to Agroseguro funding this research.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Liu Ning ◽  
Zhao Xiao-Guang ◽  
Song Shi-Jie ◽  
Zhou Wen-Fu

Underground coal mining will cause large-scale surrounding rock movement, resulting in surface subsidence and irreversible deformation of surface morphology, which would lead to geological disasters and ecological environment problems. In this paper, FLAC3D numerical model is built based on the natural slope gradient, slope type, and included angle between the slope and working face, and their influences on the change of surface morphology and soil erosion caused by underground coal mining is studied. Research results show that the change of slope gradient caused by underground mining decreases with the increase of natural slope gradient, while slope length has opposite laws; different slope types have different changes of slope morphology. The order of slope types corresponding to gradient changes is mixed slope < uniform slope < concave slope < convex slope; the length of the concave and uniform slope decreases, and the convex and mixed slope length increases. When the included angle between the slope and working face is 0° ≤ α < 90°, the underground mining will cause the natural slope gradient increase, the change of the slope gradient will increase with the rise of the angle, the slope length will decrease, and the rate of decrease will be reduced with the increase of the angle. Coal mining will cause the increasing of the runoff and erosion modulus of slope, mainly runoff modulus.


2011 ◽  
Vol 25 (2) ◽  
pp. 152
Author(s):  
Arina Miardini ◽  
Beny Harjadi

The purpose of this study was to determine the potential erosion qualitatively by using SES by using Remote Sensing and Geographic Information Systems in Kedung Ombo’s catchment area so it can be determined which areas of priority should be conserved. The method used is qualitatively analyses through SES method (Soil Erosion Status).) Which is calculated based on five parameters are: slope direction (aspect), slope (slope gradient), the density of the river (drainage density), soil type (Soil types), and land use (landuse/landcover). The result shows that DTW Kedung Ombo has three classes of erosion, which is very low, low and medium. Amounted to 41179.08 ha or 71.31% of the total DTW Kedung Ombo erosion potential is still relatively mild, 13956.01 ha (24.17%), erosion potential is very low and 2608.95 ha (4:52%) were classified as potential erosion.


2019 ◽  
pp. 1-10
Author(s):  
Manojkumar Devne ◽  
Nitin Mundhe ◽  
Akshada Kamble ◽  
Ganesh Dhawale

The growing demand and competition for water from domestic, industrial and agricultural sectors reached utmost limit. Drainage basins, catchments, and sub-catchments are the hydrological units ideally suited for planning of conservation of land and water resources. GIS techniques are useful for analysis of morphometric properties of any watershad. Morphometric aspects: linear, relief, and areal aspects of Kolavadi sub-watershed of Upper Nira basin were analyzed using spatial tools and arc-hydro tool in Arc GIS 10.3. The bifurcation ratio (2 to 4.5) indicates structural disturbances and mature topography with higher degree of drainage integration. This watershed shows less elongated shape with low relief, moderate to gentle slope, moderate drainage density and highly prone to soil erosion. Techniques used in study and results are useful for planning and monitoring the sub-watersheds for sustainable development.


2018 ◽  
Vol 182 ◽  
pp. 10-24 ◽  
Author(s):  
Wei Qin ◽  
Qiankun Guo ◽  
Wenhong Cao ◽  
Zhe Yin ◽  
Qinghong Yan ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Chhabi Lal Chidi ◽  
Wei Zhao ◽  
Suresh Chaudhary ◽  
Donghong Xiong ◽  
Yanhong Wu

Soil erosion in the agricultural area of a hill slope is a fundamental issue for crop productivity and environmental sustainability. Building terrace is a very popular way to control soil erosion, and accurate assessment of the soil erosion rate is important for sustainable agriculture and environmental management. Currently, many soil erosion estimations are mainly based on the freely available medium or coarse resolution digital elevation model (DEM) data that neglect micro topographic modification of the agriculture terraces. The development of unmanned aerial vehicle (UAV) technology enables the development of high-resolution (centimeter level) DEM to present accurate topographic features. To demonstrate the sensitivity of soil erosion estimates to DEM resolution at this high-resolution level, this study tries to evaluate soil erosion estimation in the Middle Hill agriculture terraces in Nepal based on UAV derived high-resolution (5 × 5 cm) DEM data and make a comparative study for the estimates by using the DEM data aggregated into different spatial resolutions (5 × 5 cm to 10 × 10 m). Firstly, slope gradient, slope length, and topographic factors were calculated at different resolutions. Then, the revised universal soil loss estimation (RUSLE) model was applied to estimate soil erosion rates with the derived LS factor at different resolutions. The results indicated that there was higher change rate in slope gradient, slope length, LS factor, and soil erosion rate when using DEM data with resolution from 5 × 5 cm to 2 × 2 m than using coarser DEM data. A power trend line was effectively used to present the relationship between soil erosion rate and DEM resolution. The findings indicated that soil erosion estimates are highly sensitive to DEM resolution (from 5 × 5 cm to 2 × 2 m), and the changes become relatively stable from 2 × 2 m. The use of DEM data with pixel size larger than 2 × 2 m cannot detect the micro topography. With the insights about the influencing mechanism of DEM resolution on soil erosion estimates, this study provides important suggestions for appropriate DEM data selection that should be investigated first for accurate soil erosion estimation.


Author(s):  
N. W. Ingole ◽  
S. S. Vinchurkar

The catchment boundary of Indla Ghatkhed watershed covers an area about 14..62 sq km. The erosion is a natural geomorphic process occurring continually over the earth’s surface and it largely depends on topography, vegetation, soil and climatic variables and, therefore, exhibits pronounced spatial variability due to catchments heterogeneity and climatic variation. This problem can be circumvented by discrediting the catchments into approximately homogeneous sub-areas using Geographic Information System (GIS). Soil erosion assessment modeling was carried out based on the Revised Universal Soil Loss Equation (RUSLE). A set of factors are involved in RUSLE equation are A = Average annual soil loss (mt/ha/year), R = Rainfall erosivity factor (mt/ha/year), k = Soil erodibility factor, LS = Slope length factor, C = Crop cover management factor, P = Supporting conservation practice factor. These factors extracted from different surface features by analysis and brought in to raster format. The output depicts the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the watershed.


2011 ◽  
Vol 271-273 ◽  
pp. 1146-1151 ◽  
Author(s):  
Chun Xia Yang ◽  
Bin Zhen ◽  
Li Li ◽  
Jie Hu ◽  
Peng Jiao

GIS technology and fractal theory provide a powerful tools in the soil erosion study.Based on GIS and three-dimensional laser,and under rainfall intensities of 45, 90 and 130mm/h with 20°slope gradient using simulated rainfall experiment, Amount of erosion , fractal dimensions and Hydraulic parameters were studied from different slope positions, Which was up-slope mid-slope and low-slope, The results showed that the distribution of erosion along the slope was difference in different rainfall intensity. the fractal dimensions increased along the slope,It indicated that the complexity of erosion increased with slope length. Reynolds number, Froude number, Darcy-weisbach drag coefficient and the shear stress were the important hydraulic parameters to study the soil erosion process and soil erosion mechanism. They were showed the same or the opposite trend with fractal dimensions, taking into the erosion distribution and erosion development process, Dynamics of soil erosion could be further advance.


Geosciences ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Panos Panagos ◽  
Pasquale Borrelli ◽  
Katrin Meusburger

2018 ◽  
Vol 36 ◽  
pp. 55-69
Author(s):  
Józef Szpikowski ◽  
Mikołaj Majewski ◽  
Wojciech Madaj

The paper presents potential soil erosion risk of the upper Parsęta catchment (Drawskie Lake District, NW Poland). The model considers following conditions affecting the size of soil erosion: slope gradient, LS factor, lithology, land use and land cover. Thematic maps have been reclassified into a 4-degree division. Potential soil erosion risk map was prepared on the basis of thematic maps. Areas with small and moderate susceptibility to soil erosion occupy 71.5% of the catchment area. The 4th class of erosiveness is represented by the river valley slopes, steep slopes of kame and moraine hills, covering 28.5% of the upper Parsęta catchment.


Sign in / Sign up

Export Citation Format

Share Document