Morphometric Analysis of Kolavadi Sub-Watershed in Bhor Tahsil Using GIS Techniques

2019 ◽  
pp. 1-10
Author(s):  
Manojkumar Devne ◽  
Nitin Mundhe ◽  
Akshada Kamble ◽  
Ganesh Dhawale

The growing demand and competition for water from domestic, industrial and agricultural sectors reached utmost limit. Drainage basins, catchments, and sub-catchments are the hydrological units ideally suited for planning of conservation of land and water resources. GIS techniques are useful for analysis of morphometric properties of any watershad. Morphometric aspects: linear, relief, and areal aspects of Kolavadi sub-watershed of Upper Nira basin were analyzed using spatial tools and arc-hydro tool in Arc GIS 10.3. The bifurcation ratio (2 to 4.5) indicates structural disturbances and mature topography with higher degree of drainage integration. This watershed shows less elongated shape with low relief, moderate to gentle slope, moderate drainage density and highly prone to soil erosion. Techniques used in study and results are useful for planning and monitoring the sub-watersheds for sustainable development.

2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


2021 ◽  
Author(s):  
Santosh Wagh ◽  
Vivek Manekar

Abstract Soil erosion, if remain non attentive, will increase the sediment load of the river and also affecting the life of the hydraulic structures constructed across it. Hence, proper investigations related to the soil erosion is very much essential for watershed planners and designers. In the present study, morphometric analysis is carried out for basic, linear, areal, shape and landscape aspects using 28 morphometric parameters for Bhima river watershed to prioritize and categorized it based on its erosive potential. Total 48 toposheet of Survey of India of the scale 1:50,000 are used to delineate the watersheds for the preparation of base map containing information about drainage, contours, etc. so as to ensure accuracy and quality of the work. The All India Soil and Land Use Survey (AISLUS) codification is adopted for the study area. According to AISLUS, the study area falls under region 4, covered in 19 watersheds. Morphometric parameters in Arc-GIS software and compound factor method is employed to identify the sub-watersheds which are susceptible to soil erosion. Final Priority Ranking (FPR) based category map of watersheds is reported in this study by categorized it under five categories indicating % area of each category (very high category: 15.94%; high category: 23.50%; medium category: 12.73%; low category: 23.90%; and very low category: 23.93%). Based on the findings, this study is suggesting suitable sites soil conservation practices for reducing the sediment load in Bhima river watersheds as well as Ujjani reservoir, which will be useful to the concerning authorities for better management.


2020 ◽  
Vol 51 (4) ◽  
pp. 1025-1037
Author(s):  
Mohammed & Karim

Soil erosion by water is an extensive and increasing problem worldwide. Albeit, this problem has been recognized as a significant hazard in Iraq, yet the number of studies on this topic is very limited. Most of the models used for estimating soil erosion contain parameters for slope length factor (LS). A major constraint is the difficulty in extracting the LS factor. Accordingly, the current study was initiated with the main objective of deriving models to predict the slope length from relatively easy to measure basin characteristics with a reasonable accuracy. To achieve the above objective, standard methodologies were employed to describe 30 main basins with the upper part of Iraq in terms linear, areal and relief morphometric parameters. The majority of the delineated watersheds were characterized by having high slope lengths indicating lower drainage density and higher erosion rate. Linear and non-linear least squares techniques were applied to predict the slope length from other basin characteristics. Different indicators were used to test the performance of the proposed models and the approach was validated using K-fold procedure at independent basins. The results indicated that the 4-parameter regression model outperformed the remaining models of watershed slope length. The regressors of this model are bifurcation ratio, perimeter, and basin length and slope gradient.


2020 ◽  
Vol 1 (4) ◽  
pp. 064-069
Author(s):  
Zhongsheng Guo

Water and soil loss affects the carbon and nitrogen cycles of terrestrial ecosystems, forest vegetation ecosystem products and services, and ultimately the quality of life and sustainable development of the public. China has the most serious soil erosion in the world, notably on the Loess Plateau. After years of efforts, soil and water conservation in China has developed rapidly, the surface runoff and soil loss in soil and water loss areas have decreased rapidly, and people’s living standards have gradually improved. With these improved living standards, people have higher requirements for soil and water conservation. However, soil and water conservation lacks scientifi c theoretical guidance. In this paper, through comprehensive analysis of relevant literature, a new theory of soil and water conservation is proposed. The results shows that soil and water losses refer to the process of transferring soil and water resources from one place to another, and the consequences of these losses can be divided into positive and negative effects. Soil and water conservation is not only the use of some methods or measures to reduce soil erosion to soil allowable loss requirements, but also to make efficient use of soil and water resources. The construction standard of soil and water conservation measures must be based on the allowable amount of soil erosion and be applied using spatially optimal allocation, and the work of soil and water conservation should ensure regional ecological security and realize the sustainable development of soil and water conservation.


2012 ◽  
Vol 4 (2) ◽  
pp. 167-171
Author(s):  
N. P. Naithani ◽  
Mala Bhatt

The area of investigation lies between Maneri and Gangnani along the Bhagirathi river in the lesser and central Himalayan block of Garhwal Himalayas. The rocks of Garhwal group are represented by quartzites, sericite quartzite’s and talc chlorite schist intruded by metabasics, whereas the Central crystallines are constituted by gneisses, schists, migmatites and amphibolites. For the purpose of drainage basin morphometric analysis 100 third order drainage basins were marked. Drainage basin morphometric parameters of 100 basins were calculated. On the basis of lithology and tectonic setup,the area was divided into three morphogenetic units viz Central crystallines, Thrust zone and Garhwal group. The basins which were situated below 2500 mts are categorized under low altitudes and above 2500 as basins of higher altitudes.The relationship between deainage basinmorphometric parameters and altitude suggest that basins situated at higher altitude have higher value of stream frequency, number of first and second order streams,fine texture and low drainage density.


Author(s):  
Varsha Mandale ◽  
Ravindra Bansod

Remote sensing and geographic information system (GIS) are two of the most important tools used to evaluate the morphometric characteristics of watersheds, as morphometric analysis of river basins using conventional methods, is very time to consume, laborious and cumbersome. In this study, the morphometric characteristics of the Adula watershed were calculated using ESRI- ArcGIS. The areal extent of the Adula watershed varies between 19°32’40” N to 19°43’2” N latitude and 74°10’15” E to 74°48’18” E longitude. The topographic sheets obtained from the survey of India on a scale of 1:50000 and the SRTM (Spectral Radar Topographic Mission) Digital Elevation Model of 30 m resolution, were used for watershed delineation and deriving the linear (stream order, stream number, bifurcation ratio), aerial (basin area, basin perimeter, drainage density, form factor, stream frequency, and circulatory ratio), relief (height of  outlet of watershed, basin relief, maximum height of watershed, total basin relief, absolute relief, relief ratio, ruggedness number) aspects. bifurcation ratio for varies from 3.0 to 8.33, indicating the elongated shape of the watershed. Drainage density factor values were 4.43 km/km2 indicating high drainage densities and 0.132 indicating an elongated basin with lower peaks respectively. Ruggedness number was 3.78 showing a dendritic and radial pattern with drainage texture. Therefore this morphometric analysis using geo-processing techniques employed in this study will assist in planning and decision making in the watershed development and management.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Alemsha Bogale

AbstractGIS and remote sensing approach is an effective tool to determine the morphological characteristics of the basin. Gilgel Abay watershed is stretched between latitude 10.56° to 11.22° N and longitude 36.44° to 37.03° E which is one major contributing river of Lake Tana which is the source of Blue Nile. The present study addressed linear and areal morphometric aspect of the watershed. The study deals with emphasis on the evolution of morphometric parameters such as stream order, stream length, bifurcation ratio, drainage density, stream frequency, texture ratio, elongation ratio, circularity ratio, and form factor ratio. The morphometric analysis of the basin revealed that Gilgel Abay is firth-order drainage basin with total of 662 drainage network, of which 511 are first order, 111 are second order, 30 are third order, 9 are fourth order, and 1 is fifth-order stream. The total length of stream is longer for first order and decrease with increasing stream order. The mean bifurcation ratio is 5.16 which is greater than the standard range, and it indicates that basin is mountainous and susceptible to flooding. Low drainage density is observed which is 0.6 km−2. It indicates that basin is highly permeable and thick vegetation cover. Areal aspect of the morphometric analysis of the basin revealed that the basin is slightly potential to flooding and soil erosion, indicating that runoff generated from the upland area of the watershed is significantly infiltrated at the gentle downstream part and contributing to groundwater potential. Further studies with the help of GIS and remote sensing with high-resolution remote sensing data integrating with ground control data in the field are more effective to formulate appropriate type of natural resource management system.


Author(s):  
Abhijit M. Zende ◽  
R. NAGRAJAN

The morphometric analysis of study area has been carried out using Arc GIS software. The study area covers 3035 sq.km. The drainage network was delineated using SOI topographical map of no. 47 K – 5, 6, 7, 8, 10, 11, 12, 47 L - 9 on the scale 1:50,000. Morphological characterized of the drainage line as appear in shape ,size, number, order, length, Dd, Sf, Rb, Fs, T, Rc are derived to trace its usefulness for surface development . The present study involves Geographic Information System (GIS) analysis technique to evaluate and compare linear relief and aerial morphometry of Yerala watershed of Krishna River. Yerala watershed is basically 7th order drainage and is mainly dendritic to sub dendritic. Drainage density and texture of the drainage basin is 6.89 km/km2, 18.60 respectively. The drainage frequency of Yerala watersheds is 1.96 where as the bifurcation ratio ranges from 2 to 11. Hence from the study it can be conclude that GIS technique proves to be competent tool in morphometric analysis.


Author(s):  
M. Dhanusree ◽  
G. Bhaskaran

Aims: The paper aims to study about the river basin morphometry namely the physical, linear and aerial parameters for the basin. Study Design: The Study has been carried out with the help of Geospatial techniques and statistical formulas. Place and Duration of Study: Bharathapuzha river basin, Kerala, India between January 2018 to July 2018. Methodology: The Study of River morphometry of Bharathapuzha River basin has been done with the help of SRTM satellite data. The downloaded data has been analyzed with the help of ARC GIS Software. The morphometric analysis has been carried out by dividing the basin into nine watersheds based on Water shed Atlas of India Prepared by Soil and Land Use board of           India. Relief, Linear and areal parameters of the basin is calculated with the help of statistical formulas. Results: Based on the analysis it is noted that there is not much difference in morphometric values except in some watersheds. Watershed number 5A2B5, 5A2B6 and 5A2B7 has highest drainage density, stream frequency, relief, relief ratio, ruggedness number, stream length ratio and lowest bifurcation ratio. These watersheds are characterized by highest surface runoff and erosion. The values of form factor, circulatory ratio and elongation ratio suggests that most of the watersheds are elongated and has high basin relief. The maximum stream order frequency is observed in case of first order streams and then for second order streams. Hence it is noted that there is decrease in stream frequency as stream order increases. Conclusion: The mean bifurcation ratio of the Bharathapuza basin is 1.52 which indicates the whole basin is less effected by structural control. This present study is valuable for the erosion control, watershed management, land and water resource planning and future prospective related to runoff study.


MAUSAM ◽  
2021 ◽  
Vol 59 (2) ◽  
pp. 185-194
Author(s):  
MOHAMMED MANSOOR AL MULIKI ◽  
H. T. BASAVARAJAPPA

Remote Sensing and GIS has given more importance for investigation of the geomorphological features based on the morphometric analysis duo to the diversity of data information by using digital map characters which help in moderating of data base information to get a different data like distance, area, point, line, polygon and qualitative data. This has decreased the errors which resulted by manual map sources. The main aim of this paper is the study of a morphometric analysis and characteristics of river basin area, basin shape, length, width and the ratio of length to the width, the ratio of rotation and circularity of the basin. It is also a study of relief characteristic, like slope and basin texture hypsometric curve. And also a study of drainage network characteristic like streams, stream order, length, drainage density, turn ratio, bifurcation ratio, weighted bifurcation ratio, type of drainage, and the relationship between all variables that mentioned above  with rock types and structural movements of internal and external  factors which  are represented by relief,  climate, soil, type of vegetation along with the human impact on the other hand. Results have been discussed for Rasyan valley basin in the Republic of Yemen using Landsat data.


Sign in / Sign up

Export Citation Format

Share Document