EFFICIENT CHROMATOGRAPHIC APPROACH FOR THE ANALYSIS OF INSECTICIDES AND ECO-TOXICOLOGICAL ASPECTS

2021 ◽  
pp. 74-79
Author(s):  
Suryapratap Ray ◽  
Tejasvi Bhatia

In today's rapid growing industries and technology, the frequent use of various insecticide in agriculture sector can be commonly encountered. Insecticides such as carbamate, organochlorine and pyrethroids helps protecting the crop from various insects, which ultimately leads to the better yield of agricultural products. But the main concern that comes out in such frequent practice is the adverse effects to the adjacent ecosystems. Especially, the very commonly used carbofuran, DDT, Cypermethrin and its adverse effects can be put forwarded as a potential example in this article. Apart from this, the scope of this article covers the mechanism of toxicity by insecticides to nontargeted organisms in the ecosystem, the recent developments in the analytical techniques considering HPLC and GC, the method of extraction and quantication of active component in sample. A comparison between GC and HPLC is done and the preferred instrumentation is concluded while considering the analysis of Insecticide. Scope of this review also covers the symptoms and treatment of insecticide poisoning.

2020 ◽  
Vol 16 ◽  
Author(s):  
Mustafa Çelebier ◽  
Merve Nenni

Background: Metabolomics has gained importance in clinical applications over the last decade. Metabolomics studies are significant because the systemic metabolome is directly affected by disease conditions. Metabolome-based biomarkers are actively being developed for early diagnosis and to indicate the stage of specific diseases. Additionally, understanding the effect of an intervention on a living organism at the molecular level is a crucial strategy for understanding novel or unexpected biological processes. Results: The simultaneous improvements in advanced analytical techniques, sample preparation techniques, computer technology, and databank contents has enabled more valuable scientific information to be gained from metabolomics than ever before. With over 15,000 known endogenous metabolites, there is no single analytical technique capable of analyzing the whole metabolome. However, capillary electrophoresis-mass spectrometry (CE-MS) is a unique technique used to analyze an important portion of metabolites not accessible by liquid chromatography or gas chromatography techniques. The analytical capability of CE, combined with recent sample preparation techniques focused on extracting polar-ionic compounds, make CE-MS a perfect technique for metabolomic studies. Conclusion: Here, previous reviews of CE-MS based metabolomics are evaluated to highlight recent improvements in this technique. Specifically, we review papers from the last two years (2018 and 2019) on CE-MS based metabolomics. The current situation and the challenges facing metabolomic studies are discussed to reveal the high potential of CE-MS for further studies, especially in biomarker development studies.


Author(s):  
M. E. de Burgh ◽  
A. B. West ◽  
F. Jeal

The possibility that marine invertebrates might obtain part of their nutritional requirements by direct absorption of dissolved molecules through the epidermis has recently received considerable attention. This revival of interest in a field which had been virtually abandoned since the early part of the century was led by the findings of Stephens & Schinske (1957, 1958, 1961). Modern analytical techniques have revealed that the amount of dissolved nutrients in coastal waters is much greater than was formerly realized; total amino acids have been recorded in concentrations of up to 10-4 mole/litre in south-east Alaskan waters (Schell, 1974) and 7 x 10-5 mole/litre off Helgoland (Bohling, 1970). Direct absorption of amino acids has been conclusively established in several phyla (see reviews by Stephens, 1968,1972), and one of the major aims of current research is to show that dissolved organic molecules taken up from available concentrations could be of nutritional significance. Recent developments concerning the possible roles of uptake in marine ecosystems have been reviewed by West, de Burgh & Jeal (1977).


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Effective productivity estimates of fresh produced crops are very essential for efficient farming, commercial planning, and logistical support. In the past ten years, machine learning (ML) algorithms have been widely used for grading and classification of agricultural products in agriculture sector. However, the precise and accurate assessment of the maturity level of tomatoes using ML algorithms is still a quite challenging to achieve due to these algorithms being reliant on hand crafted features. Hence, in this paper we propose a deep learning based tomato maturity grading system that helps to increase the accuracy and adaptability of maturity grading tasks with less amount of training data. The performance of proposed system is assessed on the real tomato datasets collected from the open fields using Nikon D3500 CCD camera. The proposed approach achieved an average maturity classification accuracy of 99.8 % which seems to be quite promising in comparison to the other state of art methods.


2006 ◽  
Vol 11 (1) ◽  
pp. 114-129 ◽  
Author(s):  
Teemu Suna ◽  
Michael Hardey ◽  
Jouni Huhtinen ◽  
Yrjö Hiltunen ◽  
Kimmo Kaski ◽  
...  

A marked feature of recent developments in the networked society has been the growth in the number of people making use of Internet dating services. These services involve the accumulation of large amounts of personal information which individuals utilise to find others and potentially arrange offline meetings. The consequent data represent a challenge to conventional analysis, for example, the service that provided the data used in this paper had approximately 5,000 users all of whom completed an extensive questionnaire resulting in some 300 parameters. This creates an opportunity to apply innovative analytical techniques that may provide new sociological insights into complex data. In this paper we utilise the self-organising map (SOM), an unsupervised neural network methodology, to explore Internet dating data. The resulting visual maps are used to demonstrate the ability of SOMs to reveal interrelated parameters. The SOM process led to the emergence of correlations that were obscured in the original data and pointed to the role of what we call ‘cultural age’ in the profiles and partnership preferences of the individuals. Our results suggest that the SOM approach offers a well established methodology that can be easily applied to complex sociological data sets. The SOM outcomes are discussed in relation to other research about identifying others and forming relationships in a network society.


2021 ◽  
Author(s):  
Barbara Ferrucci ◽  
Chiara Telloli

<p>After the release of high levels of radioactivity into the environment, one of the main concern relates the contamination foodstuffs. In some exposure scenarios the transfer of radionuclides through the food chain to consumers represents a major contribution to human dose. Therefore an accurate estimation of radionuclide activity concentrations in agricultural products is crucial to evaluate the ingestion dose to the population consuming locally produced food. There are many mechanisms contributing to the radioacive contamination of agricultural products as interception, retention, absorption and translocation, due to mechanisms as deposition to the exposed plant surfaces, and/or root uptake. In the last decades several efforts have been spent in developing mathematical models to predict the potential transfers of radionuclides in plants and their concentration in the edible parts. Nevertheless the relative significance of each pathway depends on a large amount of variables and parameters that increase the complexity of the models, moreover the lack of expermental data, often limit the possibility to make any meaningful results. The main aspect that make difficult to predict the uptake of radionuclides by plants is the dynamic nature of the contamination scenarios due primarly to the the growing of plants. Nevertheless, there are some factors that can be considered as ‘static’ for each specific geographic area, and each specific radionuclide, as the soil characteristics, the type of crop, and the behavour of some radionuclides in the environment. In the framework of a preliminary safety assessment of a radioactive release scenario, these factors could be taken as reference indicators of the potential impact on the local human food chain radioactive contamination. In this work we focus on the analysis of the scientific literature pertaining to all experimntal studies in radionuclide plant uptake, from 2000 to 2020. The aims of this analysis is to collect set of some characteristics allowing to classify, in a macroscopic scale, specific reference indicators that most contribute to the radioactive contamination of agricultural products in different geographyc areas.</p>


2022 ◽  
Vol 157 ◽  
pp. 112070
Author(s):  
Hany S. EL-Mesery ◽  
Ahmed I. EL-Seesy ◽  
Zicheng Hu ◽  
Yang Li

Author(s):  
Fahri Özsungur ◽  
Himmet Karadal

This research aims to investigate the sectoral market share of the professional committees, their current status, and expectations in the context of employment. It was determined that the market share of the sectors of 58.55% of the participants decreased in 2019. 46.71% of participants had the prediction that there would be no change in their market share in 2020. 45.39% of the participants anticipated a decrease in employment in 2019, and 58.55% anticipated that there would be no change in employment in 2020. 69.74% of the members of the professional committees participating in the research stated that there was a qualified employee shortage in the sector. The agriculture sector comes to the fore in the required employment areas. Participants stated that qualified employees trained according to the sector should be increased. According to the results, it was determined that there was a need for employment in agricultural products sales, textile, medical equipment, restaurants and cafes, insurance, private health services, advertising and media, paper, and packaging sectors.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Irish Lorraine B. PABUAYON ◽  
Yazhou SUN ◽  
Wenxuan GUO ◽  
Glen L. RITCHIE

Abstract Recent technological advances in cotton (Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis. High-throughput phenotyping (HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth, yield, and adaptation to biotic or abiotic stress. Researchers have conducted extensive experiments on HTP and developed techniques including spectral, fluorescence, thermal, and three-dimensional imaging to measure the morphological, physiological, and pathological resistance traits of cotton. In addition, ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems. This review paper highlights the techniques and recent developments for HTP in cotton, reviews the potential applications according to morphological and physiological traits of cotton, and compares the advantages and limitations of these HTP systems when used in cotton cropping systems. Overall, the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton. However, because of its relative novelty, HTP has some limitations that constrains the ability to take full advantage of what it can offer. These challenges need to be addressed to increase the accuracy and utility of HTP, which can be done by integrating analytical techniques for big data and continuous advances in imaging.


Sign in / Sign up

Export Citation Format

Share Document