scholarly journals PHARMACOLOGICAL EVALUATION OF FICUS RELIGIOSA FOR THEIR INVITRO HYPOGLYCEMIC ACTIVITY

2020 ◽  
pp. 1-2
Author(s):  
Poonam Pandey

Diabetes mellitus is a metabolic disorder and its management is an important criterion for pharmacotherapy. The medicinal plants play very important role in preventing the progress of the disease. Present study deals with screening of polyherbal extracts using in-vitro techniques for its antidiabetic activity. The plants used in the present study are Ficus religiosa which use traditionally for the treatment of various ailments. In the present study different part of F. religiosa bark showed highest antioxidant and highest antidiabetic activity. This study indicates the curative beneƒOts of F. religiosa in traditional medicinal system.

Author(s):  
Jeenu Joseph ◽  
Lincy Joseph ◽  
Mathew George

Medicinal plants are the oldest form of healthcare known to mankind. Antioxidants are considered to be important in fighting against the damages done by the free radicals produced due to oxidative stress. Antiepileptic drugs help to minimize or to irradiate the convulsive shocks and seizures as a result of abnormal and excessive nerve cell activity. Standardized, well established in vitro and in vivo methods are available for experimental evaluation of antioxidant and antiepileptic agents. A step wise procedure from in vitro and in vivo seems reasonable to reduce the large quantity of potential drugs to a few promising agents for further clinical testing. This review has focused on some herbal drugs with both antioxidant and antiepileptic property such as Brassica nigra, Bacopa monniera, Ficus religiosa, Convolvulus pluricalis, Jatamansi and Acorus calamus.


2020 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Anitha T A ◽  
Pakutharivu T ◽  
Nirubama K ◽  
Akshaya V

The traditional herbal medicines are mainly obtained from plants are used in the management of Diabetes mellitus. The main objective of this work was to assess the presence of phytochemical compounds and to evaluate the in vitro antidiabetic activity of isopropanolic extracts of Pimenta racemosa leaves by studying their α-amylase inhibitory activity and glucose transport across yeast cells. Screening of phytochemicals showed positive results for alkaloids, steroids, cardiac glycosides, terpenoids, reducing sugars, anthraquinones, and results of in vitro α-amylase inhibitory studies demonstrated there was a dose-dependent increase in percentage inhibitory activity by the isopropanolic leaf extracts of Pimenta racemosa. At a concentration of 1 mg/ml, the extract showed a percentage inhibition 33.6 and for 5 mg/ml it was 91.2. The glucose uptake study was also studied through yeast cells by analyzing theamount of glucose remaining in the medium after a specific time intervals. It serves as an indicator for the capability of isopropanolic leaf extracts of Pimenta racemosa to transport the glucose into yeast cells. As a result, we found that the isopropanolic leaf extract of Pimenta racemosa have inhibitory activity against αamylase and also, which is efficient in glucose uptake. This therapeutic potentiality of Pimenta racemosa could be exploited in the treatment of Type 2 Diabetes mellitus. Further studies are also required to elucidate whether the plant have antidiabetic potential by in vivo for corroborating the traditional claim of the plant.


Author(s):  
Prem Kumar ◽  
Sudha Rani ◽  
B Arunjyothi ◽  
P. Chakrapani ◽  
A Rojarani

Diabetes mellitus is a difficult metabolic disorder that has seriously impact the human health and quality of life. Medicinal plants are being used to control diabetes However, they are not entirely effective and no one has ever been reported to have fully recovered from diabetes. Many plants have been used for the management of diabetes mellitus in various traditional systems of medicine worldwide as they are a great source of biological constituents and many of them are known to be effective against diabetes. Medicinal plants with antihyperglycemic activities are being more desired, owing to lesser sideeffects and low cost. Streptozotocin was induced to all groups of rats at dosage of 35 -55mg/kg except for the normal. Streptozotocin induced diabetes in sprague dawly rats were used to study antidiabetic activity of methonolic extract of two medicinal plants Gymnema sylvestre,Andrographis paniculata methanolic leaf extract was administered orally in graded doses of 30 mg/kg,50mg /kg sprague dawly rats Gymnema sylvestre at a dose of 30mg/kg and Andrographis paniculata at a dose of 50mg/kg showed significant anti-hyperglycemic and anti-oxidative effect which was evident from the 1st week of treatment.


2019 ◽  
Vol 37 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Jean Carlos Cardoso ◽  
Maria Eduarda BS de Oliveira ◽  
Fernanda de CI Cardoso

ABSTRACT The production of secondary metabolites from medicinal plants, also called Plant-Derived Medicinal Compounds (PDMC), is gaining ground in the last decade. Concomitant to the increase in the knowledge about pharmacological properties of these compounds, horticultural plants are becoming the most important, sustainable and low-cost biomass source to obtain high-complex PDMCs to be used as medicaments. Biotechnological tools, including plant cell and tissue culture and plant genetic transformation, are increasingly being employed to produce high quality and rare PDMC under in vitro conditions. The proper use of these technologies requires studies in organogenesis to allow for better control of in vitro plant development and, thus, to the production of specific tissues and activation of biochemical routes that result in the biosynthesis of the target PDMCs. Either biotic or abiotic factors, called elicitors, are responsible for triggering the PDMC synthesis. In vitro techniques, when compared to the conventional cultivation of medicinal plants in greenhouse or in the field, have the advantages of (1) producing PDMCs in sterile and controlled environmental conditions, allowing better control of the developmental processes, such as organogenesis, and (2) producing tissues with high PDMC contents, due to the efficient use of different biotic and abiotic elicitors. Nevertheless, the process has many challenges, e.g., the establishment of step-by-step protocols for in vitro biomass and PDMC production, both involving and being affected by many factors. Other limitations are the high costs in opposition to the relatively cheaper alternative of growing medicinal plants conventionally. This paper aims to quickly review the general origin of plant secondary metabolites, the leading techniques and recent advances for PDMC in vitro production, and the challenges around the use of this promising technology.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Ahmed Saeed Ali Kabbashi

Diabetes is a serious metabolic disorder and plenty of medical plants are used in traditional medicines to treat diabetes. These plants have no side effects, and many existing medicines are derived from the plants. The purpose of this systematic review is to study diabetes and to summarize the available treatments for this disease, focusing especially on herbal medicine


Author(s):  
Manish Singh Sansi ◽  
Daraksha Iram ◽  
Kapil Singh Narayan ◽  
Sandeep Kumar ◽  
Om Prakash ◽  
...  

Diabetes mellitus (DM) is a chronic disease caused by inherited or acquired deficiency in insulin secretion and by decreased insulin secretion by the organ. Insulin deficiency causes the DM. Synthetic drugs are widely used in the treatment of diabetes, but they have some side effects. The antihyperglycemic and antihyperlipedemic effects of the plants are related to their ability to maintain pancreatic function. Medicinal plants constituents such as glycosides, alkaloids, terpenoids, and flavonoids mitigate DM. B. ciliata inhibits the α-glucosidase and α-amylase. Cinnamon extracts improve insulin receptor function by activating insulin receptor kinase and inhibiting insulin receptor phosphatase, which lead to an increase in insulin sensitivity. Morinda lucida also had the highest antioxidant activity, and it also inhibited the α-glucosidase. Many plants have also been shown to antihyperlipedemic effects. Finally, it can be concluded that medicinal plants have that ability to treat or prevent DM.


Author(s):  
Virender Kaur ◽  
Kumud Upadhyaya ◽  
Milind Pande

Objective: The early stage of diabetes mellitus type 2 is associated with postprandial hyperglycemia. The therapeutic approach involved in the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycemia by inhibiting carbohydrate digesting enzymes. In an effort of identifying herbal drugs which may become useful in the prevention or mitigation of diabetes, the antidiabetic activity of Ficus semicordata (FS) and its constituents were studied. The present study was undertaken in part to identify the potent antihyperglycemic fraction from the ethanol extract of the plant, using bioassay guided evaluation.Methods: The ethanol extract of Ficus semicordata were fractionated to obtain chloroform, ethyl acetate, n-butanol and ethanol extracts which were tested for alpha-amylase, alpha-glucosidase inhibitory, properties. Further fractionation of the more active ethanol fraction yielded isolates FS-1 and FS-2 which were tested for in vivo antidiabetic activity using Streptozotocin (STZ)-induced diabetic rats.Results: Ethanol extract from leaves of the plant showed notable alpha-amylase (IC50 = 3.352µg/ml and alpha-glycosidase inhibitory activity (IC50= 3.448µg/ml) as compared to standard acarbose (IC50 = 3.175µg/ml. Subfraction FS-1 and FS-2 which were tested for in vivo antidiabetic activity using acute STZ-induced diabetic rats significantly (*p<0.05, **p<0.01, *** p<0.001) reduced blood glucose level.Conclusion: The Ficus semicordata plant extracts and the fractionated components could be used as a natural antidiabetic after comprehensive in vitro and in vivo biological studies.


2020 ◽  
Vol 25 ◽  
pp. 2515690X2091612 ◽  
Author(s):  
Basiru Olaitan Ajiboye ◽  
Oluwafemi Adeleke Ojo ◽  
Babatunji Emmanuel Oyinloye ◽  
Mary Abiola Okesola ◽  
Adeyonu Oluwatosin ◽  
...  

Artocarpus heterophyllus Lam (Moraceae) stem bark has been used locally in managing diabetes mellitus with sparse scientific information. This study investigates the in vitro antioxidant potential of polyphenolic-rich extract of A heterophyllus stem bark as well as its antidiabetic activity in streptozotocin-induced diabetic rats. Fifty male Wistar rats were used with the induction of diabetes by a single intraperitoneal injection of streptozotocin (45 mg/kg body weight) and were orally administered 400 mg/kg free and bound phenols of A heterophyllus stem bark. The animals were sacrificed on the 28th day of the experiment using the cervical dislocation method; antihyperglycemia and anti-inflammatory parameters were subsequently assessed. The polyphenolic extracts demonstrated antioxidant potentials (such as hydrogen peroxide and diphenyl-1-picrylhydrazyl), as well as strong inhibitory activity against amylase and glucosidase. There was a significant ( P < .05) increase in glycogen, insulin concentration, pancreatic β-cell scores (HOMA-β), antioxidant enzymes and hexokinase activities, as well as glucose transporter concentration in diabetic animals administered the extracts and metformin. Also, a significant ( P < .05) reduction in fasting blood glucose, lipid peroxidation, glucose-6-phosphatase, and all anti-inflammatory parameters were observed in diabetic rats administered the extracts and metformin. The extracts demonstrated antidiabetic potential, which may be useful in the management of diabetes mellitus


Sign in / Sign up

Export Citation Format

Share Document