scholarly journals Geometric Derivative Filter for Image Enhancement

Author(s):  
Hamid Hassanpour

This article introduces and explains geometric derivative filter as a new method for image processing and enhancing quality of images.. It's mathematical concept will be explored and some examples of applying this filter to images will we illustrated.

2021 ◽  
Author(s):  
Hamid Hassanpour

This article introduces and explains geometric derivative filter as a new method for image processing and enhancing quality of images.. It's mathematical concept will be explored and some examples of applying this filter to images will we illustrated.


2020 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Puspad Kumar Sharma ◽  
Nitesh Gupta ◽  
Anurag Shrivastava

In image processing applications, one of the main preprocessing phases is image enhancement that is used to produce high quality image or enhanced image than the original input image. These enhanced images can be used in many applications such as remote sensing applications, geo-satellite images, etc. The quality of an image is affected due to several conditions such as by poor illumination, atmospheric condition, wrong lens aperture setting of the camera, noise, etc [2]. So, such degraded/low exposure images are needed to be enhanced by increasing the brightness as well as its contrast and this can be possible by the method of image enhancement. In this research work different image enhancement techniques are discussed and reviewed with their results. The aim of this study is to determine the application of deep learning approaches that have been used for image enhancement. Deep learning is a machine learning approach which is currently revolutionizing a number of disciplines including image processing and computer vision. This paper will attempt to apply deep learning to image filtering, specifically low-light image enhancement. The review given in this paper is quite efficient for future researchers to overcome problems that helps in designing efficient algorithm which enhances quality of the image.


Author(s):  
Kamlesh Sharma ◽  
Nidhi Garg

Image processing is the use of algorithms to perform various operations on digital images. The techniques that are explained further are image segmentation and image enhancement. Image Segmentation is a method to partition an image into multiple segments, to change the presentation of an image into something more meaningful and easier to analyze. The current image segmentation techniques include region-based segmentation and edge detection segmentation. Image Enhancement is the process of improving the quality of image. Under this section there are two broad divisions- Spatial Domain Technique and Frequency Domain Technique.


Author(s):  
Dr. Kamlesh Sharma ◽  
◽  
Nidhi Garg ◽  

Image processing is the use of algorithms to perform various operations on digital images. The techniques that are explained further are image segmentation and image enhancement. Image Segmentation is a method to partition an image into multiple segments, to change the presentation of an image into something more meaningful and easier to analyze. The current image segmentation techniques include region-based segmentation and edge detection segmentation. Image Enhancement is the process of improving the quality of image. Under this section there are two broad divisions- Spatial Domain Technique and Frequency Domain Technique.


2018 ◽  
pp. 2211-2232
Author(s):  
C. J. Prabhakar ◽  
P. U. Praveen Kumar

In this chapter, the authors provide an overview of state-of-the-art image enhancement and restoration techniques for underwater images. Underwater imaging is one of the challenging tasks in the field of image processing and computer vision. Usually, underwater images suffer from non-uniform lighting, low contrast, diminished color, and blurring due to attenuation and scattering of light in the underwater environment. It is necessary to preprocess these images before applying computer vision techniques. Over the last few decades, many researchers have developed various image enhancement and restoration algorithms for enhancing the quality of images captured in underwater environments. The authors introduce a brief survey on image enhancement and restoration algorithms for underwater images. At the end of the chapter, we present an overview of our approach, which is well accepted by the image processing community to enhance the quality of underwater images. Our technique consists of filtering techniques such as homomorphic filtering, wavelet-based image denoising, bilateral filtering, and contrast equalization, which are applied sequentially. The proposed method increases better image visualization of objects which are captured in underwater environment compared to other existing methods.


Author(s):  
C. J. Prabhakar ◽  
P. U. Praveen Kumar

In this chapter, the authors provide an overview of state-of-the-art image enhancement and restoration techniques for underwater images. Underwater imaging is one of the challenging tasks in the field of image processing and computer vision. Usually, underwater images suffer from non-uniform lighting, low contrast, diminished color, and blurring due to attenuation and scattering of light in the underwater environment. It is necessary to preprocess these images before applying computer vision techniques. Over the last few decades, many researchers have developed various image enhancement and restoration algorithms for enhancing the quality of images captured in underwater environments. The authors introduce a brief survey on image enhancement and restoration algorithms for underwater images. At the end of the chapter, we present an overview of our approach, which is well accepted by the image processing community to enhance the quality of underwater images. Our technique consists of filtering techniques such as homomorphic filtering, wavelet-based image denoising, bilateral filtering, and contrast equalization, which are applied sequentially. The proposed method increases better image visualization of objects which are captured in underwater environment compared to other existing methods.


2013 ◽  
Vol 427-429 ◽  
pp. 1836-1840 ◽  
Author(s):  
Yong Zhuo Wu ◽  
Zhen Tu ◽  
Lei Liu

Iamge repair using the digital image processing technology has become a new research point in computer application. A novel method of local statistic enhancement based on genetic algorithm is proposed in this paper for the image enhancement. The modified amplified function are used as the jugement criterion, and the optimal paremeters are searched by the genetic algorithm. Experimental results show that the quality of images is improved dramatically by using this method.


2019 ◽  
Vol 224 ◽  
pp. 04010
Author(s):  
Viacheslav Voronin

The quality of remotely sensed satellite images depends on the reflected electromagnetic radiation from the earth’s surface features. Lack of consistent and similar amounts of energy reflected by different features from the earth’s surface results in a poor contrast satellite image. Image enhancement is the image processing of improving the quality that the results are more suitable for display or further image analysis. In this paper, we present a detailed model for color image enhancement using the quaternion framework. We introduce a novel quaternionic frequency enhancement algorithm that can combine the color channels and the local and global image processing. The basic idea is to apply the α-rooting image enhancement approach for different image blocks. For this purpose, we split image in moving windows on disjoint blocks. The parameter alfa for every block and the weights for every local and global enhanced image driven through optimization of measure of enhancement (EMEC). Some presented experimental results illustrate the performance of the proposed approach on color satellite images in comparison with the state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xi Zhang ◽  
Hao Wu ◽  
Zhi Zhou

Computer vision is currently playing an increasingly important role in automatically identifying the character of the image processing technology as research hotbed in the field of smart computing, OCR, face recognition, fingerprinting, biometric recognition, and so forth. Content-based image recovery, video recovery, multimedia collection, watermarking, games, film stunts, virtual reality, e-commerce, and other apps are available all round. The color pictures of parts taken by industrial cameras depend on computer performance and the intricate environment, and in particular, on the whole resolution image display, a lot of CPU resources are needed. Some details cannot be shown completely at the same time. If the image is not sufficiently clearly visible, methods for image processing like improvement, noise reduction, and interpolation must be used to improve color photo clarity. This article, based on the OpenCV platform, uses frequency domain filters, median filters, Fourier transform, and other image improvement technologies to remove image noise in order to enhance the quality of local photos from industrial cameras’ components. Finally, clear and available image information is obtained in different experimental methods, which check the application of image enhancement technology to image rebuilding. Finally, the performance of the proposed method in terms of CPBD value, definition Q value, and operation time is compared, which shows that the proposed method has obvious advantages in the above performance.


2019 ◽  
Vol 8 (3) ◽  
pp. 6848-6851

The method Histogram equalization is common in image enhancement. Using histogram to contrast the entire image and reduce noise .but we are using histogram equalization method remove the noise on entire image. But in some applications this is not suitable. Using contrast method we perform on small regions where our needed. The clip and block side method we will enhance the image. The contrast should be enhanced in this paper. Here we are used algorithm based on algorithm we should find the quality of the vessel bonding


Sign in / Sign up

Export Citation Format

Share Document