scholarly journals Blind Hyperspectral and Multispectral Image Fusion Using Coupled Non-Negative Tucker Tensor Decomposition

Author(s):  
Marzieh Zare

Fusing a low spatial resolution hyperspectral image (HSI) with a high spatial resolution multispectral image (MSI) to produce a fused high spatio-spectal resolution one, referred to as HSI super-resolution, has recently attracted increasing research interests. In this paper, a new method based on coupled non-negative tensor decomposition (CNTD) is proposed. The proposed method uses tucker tensor factorization for low resolution hyperspectral image (LR-HSI) and high resolution multispectral image (HR-MSI) under the constraint of non-negative tensor ecomposition (NTD). The conventional non-negative matrix factorization (NMF) method essentially loses spatio-spectral joint structure information when stacking a 3D data into a matrix form. On the contrary, in NMF-based methods, the spectral, spatial, or their joint structures must be imposed from outside as a constraint to well pose the NMF problem, The proposed CNTD method blindly brings the advantage of preserving the spatio-spectral joint structure of HSIs. In this paper, the NTD is imposed on the coupled tensor of HIS and MSI straightly. Hence the intrinsic spatio-spectral joint structure of HSI can be losslessly expressed and interdependently exploited. Furthermore, multilinear interactions of different modes of the HSIs can be exactly modeled by means of the core tensor of the Tucker tensor decomposition. The proposed method is completely straight forward and easy to implement. Unlike the other state-of-the-art methods, the complexity of the proposed CNTD method is quite linear with the size of the HSI cube. Compared with the state-of-the-art methods experiments on two well-known datasets, give promising results with lower complexity order.

2021 ◽  
Author(s):  
Marzieh Zare

Fusing a low spatial resolution hyperspectral image (HSI) with a high spatial resolution multispectral image (MSI) to produce a fused high spatio-spectal resolution one, referred to as HSI super-resolution, has recently attracted increasing research interests. In this paper, a new method based on coupled non-negative tensor decomposition (CNTD) is proposed. The proposed method uses tucker tensor factorization for low resolution hyperspectral image (LR-HSI) and high resolution multispectral image (HR-MSI) under the constraint of non-negative tensor ecomposition (NTD). The conventional non-negative matrix factorization (NMF) method essentially loses spatio-spectral joint structure information when stacking a 3D data into a matrix form. On the contrary, in NMF-based methods, the spectral, spatial, or their joint structures must be imposed from outside as a constraint to well pose the NMF problem, The proposed CNTD method blindly brings the advantage of preserving the spatio-spectral joint structure of HSIs. In this paper, the NTD is imposed on the coupled tensor of HIS and MSI straightly. Hence the intrinsic spatio-spectral joint structure of HSI can be losslessly expressed and interdependently exploited. Furthermore, multilinear interactions of different modes of the HSIs can be exactly modeled by means of the core tensor of the Tucker tensor decomposition. The proposed method is completely straight forward and easy to implement. Unlike the other state-of-the-art methods, the complexity of the proposed CNTD method is quite linear with the size of the HSI cube. Compared with the state-of-the-art methods experiments on two well-known datasets, give promising results with lower complexity order.


2021 ◽  
Vol 13 (15) ◽  
pp. 2930
Author(s):  
Marzieh Zare ◽  
Mohammad Sadegh Helfroush ◽  
Kamran Kazemi ◽  
Paul Scheunders

Fusing a low spatial resolution hyperspectral image (HSI) with a high spatial resolution multispectral image (MSI), aiming to produce a super-resolution hyperspectral image, has recently attracted increasing research interest. In this paper, a novel approach based on coupled non-negative tensor decomposition is proposed. The proposed method performs a tucker tensor factorization of a low resolution hyperspectral image and a high resolution multispectral image under the constraint of non-negative tensor decomposition (NTD). The conventional matrix factorization methods essentially lose spatio-spectral structure information when stacking the 3D data structure of a hyperspectral image into a matrix form. Moreover, the spectral, spatial, or their joint structural features have to be imposed from the outside as a constraint to well pose the matrix factorization problem. The proposed method has the advantage of preserving the spatio-spectral structure of hyperspectral images. In this paper, the NTD is directly imposed on the coupled tensors of the HSI and MSI. Hence, the intrinsic spatio-spectral structure of the HSI is represented without loss, and spatial and spectral information can be interdependently exploited. Furthermore, multilinear interactions of different modes of the HSIs can be exactly modeled with the core tensor of the Tucker tensor decomposition. The proposed method is straightforward and easy to implement. Unlike other state-of-the-art approaches, the complexity of the proposed approach is linear with the size of the HSI cube. Experiments on two well-known datasets give promising results when compared with some recent methods from the literature.


2011 ◽  
Vol 356-360 ◽  
pp. 2897-2903
Author(s):  
Fen Fen Guo ◽  
Jian Rong Fan ◽  
Wen Qian Zang ◽  
Fei Liu ◽  
Huai Zhen Zhang

The vacancy of hyperspectral image (HSI) in China is made up by HJ-1A satellite, which makes more study and application possible. But comparing with other HSI, low spatial resolution turns into a big limiting obstacle for application. In order to improve the HSI quality and make full use of the existing RS data, this paper proposed a fusion approach basing on 3D wavelet transform (3D WT) to fusing HJ-1A HSI and Multispectral image (MSI) using their 3D structure. Contrasting with the principal component transform (PCA) and Gram-Schmidt fusion approach, which are mature at present, 3D WT fusion approach use all bands of MSI to its advantage and the fusion result perform better in both spatial and spectral quality.


2018 ◽  
Vol 10 (10) ◽  
pp. 1574 ◽  
Author(s):  
Dongsheng Gao ◽  
Zhentao Hu ◽  
Renzhen Ye

Due to sensor limitations, hyperspectral images (HSIs) are acquired by hyperspectral sensors with high-spectral-resolution but low-spatial-resolution. It is difficult for sensors to acquire images with high-spatial-resolution and high-spectral-resolution simultaneously. Hyperspectral image super-resolution tries to enhance the spatial resolution of HSI by software techniques. In recent years, various methods have been proposed to fuse HSI and multispectral image (MSI) from an unmixing or a spectral dictionary perspective. However, these methods extract the spectral information from each image individually, and therefore ignore the cross-correlation between the observed HSI and MSI. It is difficult to achieve high-spatial-resolution while preserving the spatial-spectral consistency between low-resolution HSI and high-resolution HSI. In this paper, a self-dictionary regression based method is proposed to utilize cross-correlation between the observed HSI and MSI. Both the observed low-resolution HSI and MSI are simultaneously considered to estimate the endmember dictionary and the abundance code. To preserve the spectral consistency, the endmember dictionary is extracted by performing a common sparse basis selection on the concatenation of observed HSI and MSI. Then, a consistent constraint is exploited to ensure the spatial consistency between the abundance code of low-resolution HSI and the abundance code of high-resolution HSI. Extensive experiments on three datasets demonstrate that the proposed method outperforms the state-of-the-art methods.


2019 ◽  
Vol 10 (1) ◽  
pp. 237 ◽  
Author(s):  
Fei Ma ◽  
Feixia Yang ◽  
Ziliang Ping ◽  
Wenqin Wang

The limitations of hyperspectral sensors usually lead to coarse spatial resolution of acquired images. A well-known fusion method called coupled non-negative matrix factorization (CNMF) often amounts to an ill-posed inverse problem with poor anti-noise performance. Moreover, from the perspective of matrix decomposition, the matrixing of remotely-sensed cubic data results in the loss of data’s structural information, which causes the performance degradation of reconstructed images. In addition to three-dimensional tensor-based fusion methods, Craig’s minimum-volume belief in hyperspectral unmixing can also be utilized to restore the data structure information for hyperspectral image super-resolution. To address the above difficulties simultaneously, this article incorporates the regularization of joint spatial-spectral smoothing in a minimum-volume simplex, and spatial sparsity—into the original CNMF, to redefine a bi-convex problem. After the convexification of the regularizers, the alternating optimization is utilized to decouple the regularized problem into two convex subproblems, which are then reformulated by separately vectorizing the variables via vector-matrix operators. The alternating direction method of multipliers is employed to split the variables and yield the closed-form solutions. In addition, in order to solve the bottleneck of high computational burden, especially when the size of the problem is large, complexity reduction is conducted to simplify the solutions with constructed matrices and tensor operators. Experimental results illustrate that the proposed algorithm outperforms state-of-the-art fusion methods, which verifies the validity of the new fusion approach in this article.


2019 ◽  
Vol 11 (23) ◽  
pp. 2809 ◽  
Author(s):  
Tang ◽  
Xu ◽  
Huang ◽  
Huang ◽  
Sun

Hyperspectral image (HSI) super-resolution (SR) is an important technique for improving the spatial resolution of HSI. Recently, a method based on sparse representation improved the performance of HSI SR significantly. However, the spectral dictionary was learned under a fixed size, empirically, without considering the training data. Moreover, most of the existing methods fail to explore the relationship among the sparse coefficients. To address these crucial issues, an effective method for HSI SR is proposed in this paper. First, a spectral dictionary is learned, which can adaptively estimate a suitable size according to the input HSI without any prior information. Then, the proposed method exploits the nonlocal correlation of the sparse coefficients. Doubleregularized sparse representation is then introduced to achieve better reconstructions for HSI SR. Finally, a high spatial resolution HSI is generated by the obtained coefficients matrix and the learned adaptive size spectral dictionary. To evaluate the performance of the proposed method, we conduct experiments on two famous datasets. The experimental results demonstrate that it can outperform some relatively state-of-the-art methods in terms of the popular universal quality evaluation indexes.


2020 ◽  
Author(s):  
Zhou Hang ◽  
Quan Tingwei ◽  
Huang Qing ◽  
Liu Tian ◽  
Cao Tingting ◽  
...  

AbstractNeuron reconstruction can provide the quantitative data required for measuring the neuronal morphology and is crucial in the field of brain research. However, the difficulty in reconstructing packed neuritis, wherein massive labor is required for accurate reconstruction in most cases, has not been resolved. In this work, we provide a fundamental pathway for solving this challenge by proposing the use of the super-resolution segmentation network (SRSNet) that builds the mapping of the neurites in the original neuronal images and their segmentation in a higher-resolution space. SRSNet focuses on enlarging the distances between the boundaries of the packed neurites producing the high-resolution segmentation images. Thus, in the construction of the training datasets, only the traced skeletons of neurites are required, which vastly increase the usability of SRSNet. From the results of the experiments conducted in this work, it has been observed that SRSNet achieves accurate reconstruction of packed neurites where the other state-of-the-art methods fail.


2020 ◽  
Vol 12 (16) ◽  
pp. 2535
Author(s):  
Xiaoxu Ren ◽  
Liangfu Lu ◽  
Jocelyn Chanussot

In recent years, fusing hyperspectral images (HSIs) and multispectral images (MSIs) to acquire super-resolution images (SRIs) has been in the spotlight and gained tremendous attention. However, some current methods, such as those based on low rank matrix decomposition, also have a fair share of challenges. These algorithms carry out the matrixing process for the original image tensor, which will lose the structure information of the original image. In addition, there is no corresponding theory to prove whether the algorithm can guarantee the accurate restoration of the fused image due to the non-uniqueness of matrix decomposition. Moreover, degenerate operators are usually unknown or difficult to estimate in some practical applications. In this paper, an image fusion method based on joint tensor decomposition (JTF) is proposed, which is more effective and more applicable to the circumstance that degenerate operators are unknown or tough to gauge. Specifically, in the proposed JTF method, we consider SRI as a three-dimensional tensor and redefine the fusion problem with the decomposition issue of joint tensors. We then formulate the JTF algorithm, and the experimental results certify the superior performance of the proposed method in comparison to the current popular schemes.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 561 ◽  
Author(s):  
Yiming Xue ◽  
Dan Zeng ◽  
Fansheng Chen ◽  
Yueming Wang ◽  
Zhijiang Zhang

Due to the limited varieties and sizes of existing public hyperspectral image (HSI) datasets, the classification accuracies are higher than 99% with convolutional neural networks (CNNs). In this paper, we presented a new HSI dataset named Shandong Feicheng, whose size and pixel quantity are much larger. It also has a larger intra-class variance and a smaller inter-class variance. State-of-the-art methods were compared on it to verify its diversity. Otherwise, to reduce overfitting caused by the imbalance between high dimension and small quantity of labeled HSI data, existing CNNs for HSI classification are relatively shallow and suffer from low capacity of feature learning. To solve this problem, we proposed an HSI classification framework named deep residual spectral spatial setwork (DRSSN). By using shortcut connection structure, which is an asymmetry structure, DRSSN can be deeper to extract features with better discrimination. In addition, to alleviate insufficient training caused by unbalanced sample sizes between easily and hard classified samples, we proposed a novel training loss function named sample balanced loss, which allocated weights to the losses of samples according to their prediction confidence. Experimental results on two popular datasets and our proposed dataset showed that our proposed network could provide competitive results compared with state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document