Carbon Materials and Their Modified Materials for Lithium Ion Battery Anodes : A Comprehensive Review

Author(s):  
Qiaoyu feng ◽  
Xueye Chen

<p>As a negative electrode material for lithium ion batteries (LIBs), carbon has a higher cycle life and higher safety. However, it has poor electrical conductivity, low charging and discharging platform, and poor stability of layered structure. Some carbon materials are complicated to make such as synthetic graphene, and the shape is difficult to control. Metal materials have good electrical conductivity, but due to the rapid volume expansion of lithium ions during the cycle of insertion and extraction, the electrodes are extremely quickly crushed and accompanied by extremely rapid capacity decay. Scholars have combined the advantages of carbon and metal materials to create a new type of carbon-based composite material. This article outlines the use of carbon based composite materials as lithium-ion electrodes to improve battery performance.</p>

2021 ◽  
Author(s):  
Qiaoyu feng ◽  
Xueye Chen

<p>As a negative electrode material for lithium ion batteries (LIBs), carbon has a higher cycle life and higher safety. However, it has poor electrical conductivity, low charging and discharging platform, and poor stability of layered structure. Some carbon materials are complicated to make such as synthetic graphene, and the shape is difficult to control. Metal materials have good electrical conductivity, but due to the rapid volume expansion of lithium ions during the cycle of insertion and extraction, the electrodes are extremely quickly crushed and accompanied by extremely rapid capacity decay. Scholars have combined the advantages of carbon and metal materials to create a new type of carbon-based composite material. This article outlines the use of carbon based composite materials as lithium-ion electrodes to improve battery performance.</p>


2021 ◽  
Author(s):  
Weixin Zhang ◽  
Lin Wu ◽  
Dujin Qiao ◽  
Jie Tian ◽  
Yan Li ◽  
...  

Safety issues limit the large-scale application of lithium-ion batteries. In this work, a new type of N-H-microcapsule fire extinguishing agent is prepared by using melamine-urea-formaldehyde resin as shell material, perfluoro(2-methyl-3-pentanone)...


Nano Research ◽  
2021 ◽  
Author(s):  
Qiang Guo ◽  
Wei Deng ◽  
Shengjie Xia ◽  
Zibo Zhang ◽  
Fei Zhao ◽  
...  

AbstractUncontrollable dendrite growth resulting from the non-uniform lithium ion (Li+) flux and volume expansion in lithium metal (Li) negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries. Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li+ flux, the effective interaction distance between lithium ions and N-containing groups should be relatively small (down to nanometer scale) according to the Debye length law. Thus, it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li+ flux. In this work, porous carbon nitride microspheres (PCNMs) with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano- and micrometer scales on the Cu/Li foil. Physically, the three-dimensional (3D) porous framework is favorable for absorbing volume changes and guiding Li growth. Chemically, this coating layer can render a suitable interaction distance to effectively homogenize the Li+ flux and contribute to establishing a robust and stable solid electrolyte interphase (SEI) layer with Li-F, Li-N, and Li-O-rich contents based on the Debye length law. Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating, resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li‖Cu and the Li‖Li symmetric cells. Meanwhile, a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of ∼ 80% after more than 200 cycles at 1 C and achieved a remarkable rate capability. The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained ∼ 73% of the initial capacity after 150 cycles at 0.2 C.


2014 ◽  
Vol 1056 ◽  
pp. 3-7 ◽  
Author(s):  
Wan Hong Zhang ◽  
Kun Peng Wang

Graphite is widely used as the negative electrode material. To find out the influence of several different modified ways on the material's electrochemical performance, the electrochemical properties of 0318、0318-GLQ、MCMB22、AGP-3-2、AGP-3-2-1 and AGP-3-2-2 batteries were investigated by means of cyclic voltammetry (CV) experimental method. Results show that surface morphology, lithium intercalate/de-intercalate process, the first coulombic efficiency, reversibility and rate capability are all different for different material. Above all, AGP-3-2-2 has the best electrochemical performance, AGP-3-2 is worst, and the results prove that coating by pitch has a positive influence on the electrochemical performance of the material.


2020 ◽  
Vol 7 (13) ◽  
pp. 2831-2837
Author(s):  
Qingbo Xia ◽  
Pierre J. P. Naeyaert ◽  
Maxim Avdeev ◽  
Siegbert Schmid ◽  
Hongwei Liu ◽  
...  

2014 ◽  
Vol 492 ◽  
pp. 370-374
Author(s):  
Xiao Zhen Liu ◽  
Guang Jian Lu ◽  
Xiao Zhou Liu ◽  
Jie Chen ◽  
Han Zhang Xiao

Pr doped SnO2 particles as negative electrode material of lithium-ion battery are synthesized by the coprecipitation method with SnCl4·5H2O and Pr2O3 as raw materials. The structure of the SnO2 particles and Pr doped SnO2 particles are investigated respectively by XRD analysis. Doping is achieved well by coprecipitation method and is recognized as replacement doping or caulking doping. Electrochemical properties of the SnO2 particles and Pr doped SnO2 particles are tested by charge-discharge and cycle voltammogram experimentation, respectively. The initial specific discharge capacity of Pr doped SnO2 the negative electrode materials is 676.3mAh/g. After 20 cycles, the capacity retention ratio is 90.5%. The reversible capacity of Pr doped SnO2 negative electrode material higher than the reversible capacity of SnO2 negative electrode material. Pr doped SnO2 particles has good lithiumion intercalation/deintercalation performance.


Sign in / Sign up

Export Citation Format

Share Document