scholarly journals Small-Scale Spatial-Temporal Correlation Modeling for Reconfigurable Intelligent Surfaces

Author(s):  
Shu Sun ◽  
Hangsong Yan

<div><div><div><p>The reconfigurable intelligent surface (RIS) is an emerging promising candidate technology for the sixth-generation wireless networks, where the element spacing is usually of sub-wavelength. Only limited knowledge, however, has been gained about the spatial-temporal correlation behavior among the elements in an RIS. In this paper, we investigate the spatial-temporal correlation models for an RIS in a wireless communication system. Joint small-scale spatial-temporal correlation functions are provided and analyzed for both ideal isotropic scattering and more practical non-isotropic scattering environments, where the latter is studied via employing an angular distribution derived from real-world millimeter-wave measurements. Furthermore, for the special case of spatial-only correlation under isotropic scattering, an analytical expression is proposed to characterize the spatial degrees of freedom (DoF) for RISs with finite element spacing and aperture sizes in practice. Analytical and numerical results demonstrate that the joint spatial-temporal correlation can be represented by a four-dimensional sinc function under isotropic scattering, while the correlation is generally stronger with more fluctuation and significantly fewer dominant eigenvalues hence smaller DoF for non-isotropic scattering.</p></div></div></div>

2021 ◽  
Author(s):  
Shu Sun ◽  
Hangsong Yan

<div><div><div><p>The reconfigurable intelligent surface (RIS) is an emerging promising candidate technology for the sixth-generation wireless networks, where the element spacing is usually of sub-wavelength. Only limited knowledge, however, has been gained about the spatial-temporal correlation behavior among the elements in an RIS. In this paper, we investigate the spatial-temporal correlation models for an RIS in a wireless communication system. Joint small-scale spatial-temporal correlation functions are provided and analyzed for both ideal isotropic scattering and more practical non-isotropic scattering environments, where the latter is studied via employing an angular distribution derived from real-world millimeter-wave measurements. Furthermore, for the special case of spatial-only correlation under isotropic scattering, an analytical expression is proposed to characterize the spatial degrees of freedom (DoF) for RISs with finite element spacing and aperture sizes in practice. Analytical and numerical results demonstrate that the joint spatial-temporal correlation can be represented by a four-dimensional sinc function under isotropic scattering, while the correlation is generally stronger with more fluctuation and significantly fewer dominant eigenvalues hence smaller DoF for non-isotropic scattering.</p></div></div></div>


2021 ◽  
pp. 027836492110218
Author(s):  
Sinan O. Demir ◽  
Utku Culha ◽  
Alp C. Karacakol ◽  
Abdon Pena-Francesch ◽  
Sebastian Trimpe ◽  
...  

Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the continuity of the operations, as task environment conditions show dynamic variations that can alter the robot’s motion and task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale magnetic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-efficient controller learning.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950007
Author(s):  
J. R. Wu ◽  
T. F. Gao ◽  
E. C. Shang

In this paper, an analytic range-independent reverberation model based on the first-order perturbation theory is extended to range-dependent waveguide. This model considers the effect of bottom composite roughness: small-scale bottom rough surface provides dominating energy for reverberation, whereas large-scale roughness has the effect of forward and back propagation. For slowly varying bottom and short signal pulse, analytic small-scale roughness backscattering theory is adapted in range-dependent waveguides. A parabolic equation is used to calculate Green functions in range-dependent waveguides, and the orthogonal property of local normal modes is employed to estimate the modal spectrum of PE field. Synthetic tests demonstrate that the proposed reverberation model works well, and it can also predict the reverberation of range-independent waveguide as a special case.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


2007 ◽  
Vol 14 (5) ◽  
pp. 587-601 ◽  
Author(s):  
F. Otsuka ◽  
Y. Omura ◽  
O. Verkhoglyadova

Abstract. We study parallel (field-aligned) diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path λ|| calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of λ|| at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004), but the spatial dependence of λ|| is inconsistent with it.


1988 ◽  
Vol 1 (21) ◽  
pp. 174 ◽  
Author(s):  
Gary L. Howell

In-situ measurements of the structural bending moments and torque about the shank-fluke interface of the dolos armor unit have been made for 42-ton (36-metric tonne) dolosse at Crescent City, California jetty. The measurements include the static loads on the dolosse as well as wave induced forces. The data were obtained from internal strain gages cast into the dolos during construction along with a special data acquisition system. The measurement system was also capable of capturing impact forces caused by dolos rocking or movement. Measurements were made during the winter storm seasons from January 1987 through May 1988. Coincident with the structural measurements, wave height and period were measured at several water depths approaching the breakwater, including a site directly in front of the dolos test section. The Crescent City jetty is a shallow water breakwater with depth limited waves in about 10 meters of water depth. The structural measurements were made from 14 dolos units arranged in a rectangular section on the top layer of the trunk portion of the jetty. Four of these dolosse are also instrumented with an accelerometer platform to measure motion with six degrees of freedom. In addition, there are three instrumented dolosse on the bottom layer of the breakwater. These dolosse measure the static stress due to the units placed on top of them, as well as pulsating forces. The structural and wave measurements, reported here, are supplemented with hydrostatic pore pressure measurements in the core material of the breakwater, and by aerial photogrammetric motion analysis (Kendall, 1988), land based surveys, boudary condition surveys, hydrographic surveys, and side scan sonar surveys.


2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Linyu Peng ◽  
Huafei Sun ◽  
Xiao Sun

We characterize the geometry of the Hamiltonian dynamics with a conformal metric. After investigating the Eisenhart metric, we study the corresponding conformal metric and obtain the geometric structure of the classical Hamiltonian dynamics. Furthermore, the equations for the conformal geodesics, for the Jacobi field along the geodesics, and the equations for a certain flow constrained in a family of conformal equivalent nondegenerate metrics are obtained. At last the conformal curvatures, the geodesic equations, the Jacobi equations, and the equations for the flow of the famous models, anNdegrees of freedom linear Hamiltonian system and the Hénon-Heiles model are given, and in a special case, numerical solutions of the conformal geodesics, the generalized momenta, and the Jacobi field along the geodesics of the Hénon-Heiles model are obtained. And the numerical results for the Hénon-Heiles model show us the instability of the associated geodesic spreads.


Sign in / Sign up

Export Citation Format

Share Document