scholarly journals Modulation Ranges of Different Sensations for Coding Electrically Evoked Tactile Sensory Feedback

Author(s):  
Jie Zhang ◽  
Manzhao Hao ◽  
Fei Yang ◽  
Wenyuan Liang ◽  
Sheng Bi ◽  
...  

The ability to perceive prosthetic grasping may enable amputees to better interact with external objects. This may require customized coding of multiple sensory feedback for each amputee. This study developed a protocol to determine optimal modulation ranges of sensations elicited by transcutaneous electrical nerve stimulation (TENS). These sensations that were referred to the lost fingers provided the possibility for restoring multi-modalities of sensory feedback for amputees with evoked tactile sensation (ETS) non-invasively. To match the restricted projected finger map area, smaller electrodes must be used to deliver electrical stimulation for multi-channel sensory information, which resulted in fewer types of sensations. Our protocol provided comprehensive information for optimal selection of amplitude and frequency in a personalized, pulse-width encoding paradigm. The good sensitivity for vibration and buzz in both able-bodied and amputee subjects suggested that perceptual intensity can be effectively modulated to convey sensory information via either of the sensations. The efficacy of this protocol in sensory coding for forearm amputees was demonstrated in finger-specific identification experiment. This protocol may allow customization of ETS-based sensory feedback with an optimal encoding strategy for individual amputees.

2021 ◽  
Author(s):  
Jie Zhang ◽  
Manzhao Hao ◽  
Fei Yang ◽  
Wenyuan Liang ◽  
Sheng Bi ◽  
...  

The ability to perceive prosthetic grasping may enable amputees to better interact with external objects. This may require customized coding of multiple sensory feedback for each amputee. This study developed a protocol to determine optimal modulation ranges of sensations elicited by transcutaneous electrical nerve stimulation (TENS). These sensations that were referred to the lost fingers provided the possibility for restoring multi-modalities of sensory feedback for amputees with evoked tactile sensation (ETS) non-invasively. To match the restricted projected finger map area, smaller electrodes must be used to deliver electrical stimulation for multi-channel sensory information, which resulted in fewer types of sensations. Our protocol provided comprehensive information for optimal selection of amplitude and frequency in a personalized, pulse-width encoding paradigm. The good sensitivity for vibration and buzz in both able-bodied and amputee subjects suggested that perceptual intensity can be effectively modulated to convey sensory information via either of the sensations. The efficacy of this protocol in sensory coding for forearm amputees was demonstrated in finger-specific identification experiment. This protocol may allow customization of ETS-based sensory feedback with an optimal encoding strategy for individual amputees.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


Author(s):  
Ann-Sophie Barwich

How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities on the basis of previous experiences. Drawing on this development, this chapter analyses perceptions as processes. Looking at olfaction as a model system, it argues for the need to abandon a stimulus-centred perspective, where smells are thought of as stable percepts, computationally linked to external objects such as odorous molecules. Perception here is presented as a measure of changing signal ratios in an environment informed by expectancy effects from top-down processes.


2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


2020 ◽  
Author(s):  
Bibi Nusreen Imambocus ◽  
Annika Wittich ◽  
Federico Tenedini ◽  
Fangmin Zhou ◽  
Chun Hu ◽  
...  

AbstractAnimals display a plethora of escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximize chances of survival. We uncovered a somatosensory network in Drosophila larvae that encodes two escape behaviors through input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of the same neuromodulatory hub neurons. These gate harsh touch responses via short Neuropeptide F, but noxious light avoidance via compartmentalized, acute Insulin-like peptide 7 action and cognate Relaxin-family receptor signaling in connected downstream neurons. Peptidergic hub neurons can thus act as central circuit elements for first order processing of converging sensory inputs to gate specific escape responses.One Sentence SummaryCompartment-specific neuropeptide action regulates sensory information processing to elicit discrete escape behavior in Drosophila larvae.


2020 ◽  
Vol 117 (39) ◽  
pp. 24590-24598
Author(s):  
Freek van Ede ◽  
Alexander G. Board ◽  
Anna C. Nobre

Adaptive behavior relies on the selection of relevant sensory information from both the external environment and internal memory representations. In understanding external selection, a classic distinction is made between voluntary (goal-directed) and involuntary (stimulus-driven) guidance of attention. We have developed a task—the anti-retrocue task—to separate and examine voluntary and involuntary guidance of attention to internal representations in visual working memory. We show that both voluntary and involuntary factors influence memory performance but do so in distinct ways. Moreover, by tracking gaze biases linked to attentional focusing in memory, we provide direct evidence for an involuntary “retro-capture” effect whereby external stimuli involuntarily trigger the selection of feature-matching internal representations. We show that stimulus-driven and goal-directed influences compete for selection in memory, and that the balance of this competition—as reflected in oculomotor signatures of internal attention—predicts the quality of ensuing memory-guided behavior. Thus, goal-directed and stimulus-driven factors together determine the fate not only of perception, but also of internal representations in working memory.


2011 ◽  
Vol 105 (2) ◽  
pp. 846-859 ◽  
Author(s):  
Lore Thaler ◽  
Melvyn A. Goodale

Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing, copying, or imitative gesturing, that characterize much of human behavior.


2017 ◽  
Vol 118 (4) ◽  
pp. 2296-2310 ◽  
Author(s):  
Charalampos Mantziaris ◽  
Till Bockemühl ◽  
Philip Holmes ◽  
Anke Borgmann ◽  
Silvia Daun ◽  
...  

To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons. NEW & NOTEWORTHY Maintaining functional interleg coordination is vitally important as animals locomote through changing environments. The relative importance of central mechanisms vs. sensory feedback in this process is not well understood. We analyzed coordination among the neural networks generating leg movements in stick insect preparations lacking phasic sensory feedback. Under these conditions, the networks governing different legs were only weakly coupled. In stick insect, central connections alone are thus insufficient to produce the leg coordination observed behaviorally.


Sign in / Sign up

Export Citation Format

Share Document